Advertisements
Advertisements
Question
Find the principal value of `cos^(-1) (-1/2)`
Solution
y `"cos"^-1 (-1/2)`
`Rightarrow "cos y" = -1/2 = -"cos" pi/3 = "cos" (pi - pi/3)`
We know that the range of the principal value branch of cos−1 is [0, π] and `cos((2pi)/3) = 1/2`
Therefore, the principal value of `cos^(-1) (-1/2)` is `(2pi)/3`
APPEARS IN
RELATED QUESTIONS
Find the principal value of `cos^(-1) (-1/sqrt2)`
Find the value of the following:
`tan^(-1) (tan (7x)/6)`
`sin^-1{cos(sin^-1 sqrt3/2)}`
Find the domain of the following function:
`f(x) = sin^-1x + sinx`
Find the domain of the following function:
`f(x)sin^-1sqrt(x^2-1)`
Evaluate the following:
`tan^-1 1+cos^-1 (-1/2)+sin^-1(-1/2)`
Evaluate the following:
`tan^-1(tan (5pi)/6)+cos^-1{cos((13pi)/6)}`
Evaluate the following:
`tan^-1(-1/sqrt3)+cot^-1(1/sqrt3)+tan^-1(sin(-pi/2))`
In ΔABC, if a = 18, b = 24, c = 30 then find the values of tan `A/2`
Find the principal value of the following: `sin^-1 (1/2)`
Evaluate the following:
`tan^-1(1) + cos^-1(1/2) + sin^-1(1/2)`
Evaluate the following:
`tan^-1 sqrt(3) - sec^-1 (-2)`
Prove the following:
`sin^-1(-1/2) + cos^-1(-sqrt(3)/2) = cos^-1(-1/2)`
Prove the following:
`sin^-1(3/5) + cos^-1(12/13) = sin^-1(56/65)`
Prove the following:
`tan^-1[sqrt((1 - cosθ)/(1 + cosθ))] = θ/(2)`, if θ ∈ (– π, π).
Find the principal solutions of the following equation:
tan 5θ = -1
sin−1x − cos−1x = `pi/6`, then x = ______
If `sin(sin^-1(1/5) + cos^-1(x))` = 1, then x = ______
Evaluate:
`sin[cos^-1 (3/5)]`
Prove that `2 tan^-1 (1/8) + tan^-1 (1/7) + 2tan^-1 (1/5) = pi/4`
Find the principal value of `sin^-1 1/sqrt(2)`
Find the principal value of `cos^-1 sqrt(3)/2`
Find the principal value of `sec^-1 (- sqrt(2))`
Choose the correct alternative:
cos 2θ cos 2ϕ+ sin2 (θ – ϕ) – sin2 (θ + ϕ) is equal to
`sin^-1x + sin^-1 1/x + cos^-1x + cos^-1 1/x` = ______
If `3sin^-1((2x)/(1 + x^2)) - 4cos^-1((1 - x^2)/(1 + x^2)) + 2tan^-1((2x)/(1 - x^2)) = pi/3`, then x is equal to ______
The domain of y = cos–1(x2 – 4) is ______.
Show that `2tan^-1 (-3) = (-pi)/2 + tan^-1 ((-4)/3)`
Solve the following equation `cos(tan^-1x) = sin(cot^-1 3/4)`
If `"sin"^-1("x"^2 - 7"x" + 12) = "n"pi, AA "n" in "I"`, then x = ____________.
`"tan"^-1 sqrt3 - "sec"^-1 (-2)` is equal to ____________.
If a = `(2sin theta)/(1 + costheta + sintheta)`, then `(1 + sintheta - costheta)/(1 + sintheta)` is
If `sqrt(2)` sec θ + tan θ = 1, then the general value of θ is
What is the value of `sin^-1(sin (3pi)/4)`?
If sin–1a + sin–1b + sin–1c = π, then find the value of `asqrt(1 - a^2) + bsqrt(1 - b^2) + csqrt(1 - c^2)`.
sin [cot–1 (cos (tan–1 x))] = ______.
Prove that:
tan–1x + tan–1y = `π + tan^-1((x + y)/(1 - xy))`, provided x > 0, y > 0, xy > 1