English

Find the value of the following: tan-1(tan 7x6) - Mathematics

Advertisements
Advertisements

Question

Find the value of the following:

`tan^(-1) (tan  (7x)/6)`

Sum

Solution 1

We know that tan−1 (tan x) = x if `x in (-pi/2,pi/2)`, which is the principal value branch of tan −1x.

Here `(7pi)/6 !in (-pi/2, pi/2)`

Now `tan^(-1) (tan  (7pi)/6)` can be written as

`tan^(-1) (tan  (7pi)/6) = tan^(-1) [tan(2pi - (5pi)/6)]`      `[tan(2pi - x) = - tan x]`

`= tan^(-1) [-tan ((5pi)/6)] `

`= tan^(-1) [tan ((-5pi)/6)]`

` = tan^(-1) [tan(pi - (5pi)/6)]`

`= tan^(-1) [tan(pi/6)], " where"  pi/6 in (-pi/2, pi/2)`

`:. tan^(-1) (tan  (7pi)/6)`

` = tan^(-1) (tan  pi/6) = pi/6`

shaalaa.com

Solution 2

Given, `tan^-1(tan (7pi)/6)`

We know that, for x ∈ `(-pi/2, pi/2)`, `cos^-1(cosx) = x`

= `tan^-1(tan  (7pi)/6)`

`= tan^-1(tan(pi + pi/6))`

= `tan^-1(tan  pi/6)`

`= pi/6`

shaalaa.com
  Is there an error in this question or solution?
Chapter 2: Inverse Trigonometric Functions - Exercise 2.3 [Page 51]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 2 Inverse Trigonometric Functions
Exercise 2.3 | Q 2 | Page 51

RELATED QUESTIONS

Find the principal values of `sin^(-1) (-1/2)`


Find the principal value of `tan^(-1) (-sqrt3)`


Find the domain of the following function:

`f(x)=sin^-1x^2`

 


Find the domain of the following function:

`f(x)=sin^-1x+sin^-1 2x`


Evaluate the following:

`tan^-1 1+cos^-1 (-1/2)+sin^-1(-1/2)`


Find the set of values of `cosec^-1(sqrt3/2)`


Evaluate the following:

`tan^-1 sqrt(3) - sec^-1 (-2)`


Find the principal solutions of the following equation:
tan 5θ = -1


Find the principal solutions of the following equation:

cot 2θ = 0.


The principal value of sin−1`(1/2)` is ______


`tan^-1(tan  (7pi)/6)` = ______


If tan−1x + tan−1y + tan−1z = π, then show that `1/(xy) + 1/(yz) + 1/(zx)` = 1


Evaluate: sin`[1/2 cos^-1 (4/5)]`


Prove that `tan^-1 (m/n) - tan^-1 ((m - n)/(m + n)) = pi/4`


Show that `sin^-1 (- 3/5) - sin^-1 (- 8/17) = cos^-1 (84/85)`


Express `tan^-1 [(cos x)/(1 - sin x)], - pi/2 < x < (3pi)/2` in the simplest form.


Find the principal value of `sin^-1  1/sqrt(2)`


Choose the correct alternative:
cos 2θ cos 2ϕ+ sin2 (θ – ϕ) – sin2 (θ + ϕ) is equal to


If `sin^-1(x/13) + cosec^-1(13/12) = pi/2`, then the value of x is ______


`cos^-1  4/5 + tan^-1  3/5` = ______.


Solve for x `tan^-1((1 - x)/(1 + x)) = 1/2 tan^-1x, x > 0`


The domain of y = cos–1(x2 – 4) is ______.


Show that `cos(2tan^-1  1/7) = sin(4tan^-1  1/3)`


Solve the following equation `cos(tan^-1x) = sin(cot^-1  3/4)`


`2  "tan"^-1 ("cos x") = "tan"^-1 (2  "cosec x")`


`"tan"(pi/4 + 1/2 "cos"^-1 "x") + "tan" (pi/4 - 1/2 "cos"^-1 "x") =` ____________.


If tan-1 x – tan-1 y = tan-1 A, then A is equal to ____________.


If `"sin"^-1("x"^2 - 7"x" + 12) = "n"pi, AA  "n" in "I"`, then x = ____________.


`2"tan"^-1 ("cos x") = "tan"^-1 (2 "cosec x")`


If `"cot"^-1 (sqrt"cos" alpha) - "tan"^-1 (sqrt "cos" alpha) = "x",` then sinx is equal to ____________.


The number of solutions of sin–1x + sin–1(1 – x) = cos–1x is


The inverse of `f(x) = sqrt(3x^2 - 4x + 5)` is


What is the principal value of cosec–1(2).


Find the principal value of `tan^-1 (sqrt(3))`


`2tan^-1 (cos x) = tan^-1 (2"cosec"  x)`, then 'x' will be equal to


Value of `sin(pi/3 - sin^1 (- 1/2))` is equal to


The value of `cos^-1(cos(π/2)) + cos^-1(sin((2π)/2))` is ______.


`(tan^-1 (sqrt(3)) - sec^-1(-2))/("cosec"^-1(-sqrt(2)) + cos^-1(-1/2))` is equal to ______.


Prove that:

tan–1x + tan–1y = `π + tan^-1((x + y)/(1 - xy))`, provided x > 0, y > 0, xy > 1


The value of `tan(cos^-1  4/5 + tan^-1  2/3)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×