English

Find the value of the following: cos-1(cos 13π6) - Mathematics

Advertisements
Advertisements

Question

Find the value of the following:

`cos^(-1) (cos  (13pi)/6)`

Sum

Solution

We know that cos−1 (cos x) = x if `x in [0,pi]`, which is the principal value branch of cos −1x.

Here, `(13pi)/6 !in [0 ,pi]` 

Now `cos^(-1) (cos  (13pi)/6)` can be written as 

`cos^(-1) (cos  (13pi)/6) `

`= cos^(-1) [cos(2pi + pi/6)]`

` = cos^(-1) [cos(pi/6)], " where " pi/6 in [0, pi]`

`:. cos^(-1) (cos  (13pi)/6) `

`= cos^(-1)[cos (pi/6)] `

`= pi/6`

shaalaa.com
  Is there an error in this question or solution?
Chapter 2: Inverse Trigonometric Functions - Exercise 2.3 [Page 51]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 2 Inverse Trigonometric Functions
Exercise 2.3 | Q 1 | Page 51

RELATED QUESTIONS

Find the principal value of cosec−1 (2)


Find the principal value of  `cos^(-1) (-1/2)`


Find the principal value of tan−1 (−1)


Find the domain of the following function:

`f(x)=sin^-1x^2`

 


Find the domain of the following function:

`f(x)=sin^-1x+sin^-1 2x`


Evaluate the following:

`cot^-1  1/sqrt3-\text(cosec)^-1(-2)+sec^-1(2/sqrt3)`


Solve for x:
`tan^-1 [(x-1),(x-2)] + tan^-1 [(x+1),(x+2)] = x/4`


Find the principal value of the following: sin-1 `(1/sqrt(2))`


Evaluate the following:

`cos^-1(1/2) + 2sin^-1(1/2)`


Evaluate the following:

`tan^-1 sqrt(3) - sec^-1 (-2)`


Evaluate the following:

`"cosec"^-1(-sqrt(2)) + cot^-1(sqrt(3))`


Evaluate cot(tan−1(2x) + cot−1(2x))


Evaluate:

`sin[cos^-1 (3/5)]`


Prove that:

`tan^-1 (4/3) + tan^-1 (1/7) = pi/4`


Solve `tan^-1 2x + tan^-1 3x = pi/4`


Find the principal value of `sin^-1  1/sqrt(2)`


Find the principal value of cosec–1(– 1)


Find the principal value of `tan^-1 (sqrt(3))`


If `sin^-1  3/5 + cos^-1  12/13 = sin^-1 P`, then P is equal to ______ 


`sin^2(sin^-1  1/2) + tan^2 (sec^-1  2) + cot^2(cosec^-1  4)` = ______.


The principal value of `sin^-1 (sin  (3pi)/4)` is ______.


The value of cot (- 1110°) is equal to ______.


Solve for x `tan^-1((1 - x)/(1 + x)) = 1/2 tan^-1x, x > 0`


The domain of the function y = sin–1 (– x2) is ______.


Prove that `tan^-1  1/4 + tan^-1  2/9 = sin^-1  1/sqrt(5)`


`"cos"  2 theta` is not equal to ____________.


If `"cos"^-1  "x + sin"^-1  "x" = pi`, then the value of x is ____________.


If tan-1 (x – 1) + tan-1 x + tan-1 (x + 1) = tan-1 3x, then the values of x are ____________.


`"cos"^-1 ["cos" (2  "cot"^-1 (sqrt2 - 1))] =` ____________.


Find the value of sec2 (tan-1 2) + cosec2 (cot-1 3) ____________.


`"cos" ["tan"^-1 {"sin" ("cot"^-1 "x")}]` is equal to ____________.


If A = `[(cosx, sinx),(-sinx, cosx)]`, then A1 A–1 is 


If `sqrt(2)` sec θ + tan θ = 1, then the general value of θ is


What is the principal value of cosec–1(2).


Find the principal value of `tan^-1 (sqrt(3))`


`2tan^-1 (cos x) = tan^-1 (2"cosec"  x)`, then 'x' will be equal to


Number of values of x which lie in [0, 2π] and satisfy the equation

`(cos  x/4 - 2sinx) sinx + (1 + sin  x/4 - 2cosx)cosx` = 0


If 2 tan–1 (cosx) = tan–1 (2 cosec x), then sin x + cos x is equal to ______.


Prove that:

tan–1x + tan–1y = `π + tan^-1((x + y)/(1 - xy))`, provided x > 0, y > 0, xy > 1


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×