Advertisements
Advertisements
प्रश्न
Find the value of the following:
`cos^(-1) (cos (13pi)/6)`
उत्तर
We know that cos−1 (cos x) = x if `x in [0,pi]`, which is the principal value branch of cos −1x.
Here, `(13pi)/6 !in [0 ,pi]`
Now `cos^(-1) (cos (13pi)/6)` can be written as
`cos^(-1) (cos (13pi)/6) `
`= cos^(-1) [cos(2pi + pi/6)]`
` = cos^(-1) [cos(pi/6)], " where " pi/6 in [0, pi]`
`:. cos^(-1) (cos (13pi)/6) `
`= cos^(-1)[cos (pi/6)] `
`= pi/6`
APPEARS IN
संबंधित प्रश्न
If `tan^-1((x-1)/(x-2))+cot^-1((x+2)/(x+1))=pi/4; `
Find the principal value of `sin^-1(1/sqrt2)`
If `sin^-1 x + sin^-1 y+sin^-1 z+sin^-1 t=2pi` , then find the value of x2 + y2 + z2 + t2
Find the set of values of `cosec^-1(sqrt3/2)`
Evaluate the following:
`tan^-1(-1/sqrt3)+cot^-1(1/sqrt3)+tan^-1(sin(-pi/2))`
In ΔABC, if a = 18, b = 24, c = 30 then find the values of tan `A/2`
Find the principal value of the following: cosec- 1(2)
Solve `tan^-1 2x + tan^-1 3x = pi/4`
Prove that `tan^-1 (m/n) - tan^-1 ((m - n)/(m + n)) = pi/4`
Find the principal value of `sin^-1 1/sqrt(2)`
Find the principal value of `sec^-1 (- sqrt(2))`
`sin^-1x + sin^-1 1/x + cos^-1x + cos^-1 1/x` = ______
If `3sin^-1((2x)/(1 + x^2)) - 4cos^-1((1 - x^2)/(1 + x^2)) + 2tan^-1((2x)/(1 - x^2)) = pi/3`, then x is equal to ______
The domain of the function y = sin–1 (– x2) is ______.
If 2 tan–1(cos θ) = tan–1(2 cosec θ), then show that θ = π 4, where n is any integer.
If tan-1 x – tan-1 y = tan-1 A, then A is equal to ____________.
`2"tan"^-1 ("cos x") = "tan"^-1 (2 "cosec x")`
If `"cot"^-1 (sqrt"cos" alpha) - "tan"^-1 (sqrt "cos" alpha) = "x",` then sinx is equal to ____________.
If a = `(2sin theta)/(1 + costheta + sintheta)`, then `(1 + sintheta - costheta)/(1 + sintheta)` is
sin 6θ + sin 4θ + sin 2θ = 0, then θ =
The inverse of `f(x) = sqrt(3x^2 - 4x + 5)` is
What will be the principal value of `sin^-1(-1/2)`?
If `sin(sin^-1 1/5 + cos^-1 x) = 1`, the what will be the value of x?
If f(x) = x5 + 2x – 3, then (f–1)1 (–3) = ______.
If f'(x) = x–1, then find f(x)
Let x = sin–1(sin8) + cos–1(cos11) + tan–1(tan7), and x = k(π – 2.4) for an integer k, then the value of k is ______.
Number of values of x satisfying the system of equations `sin^-1sqrt(2 + e^(-2x) - 2e^-x) + sec^-1sqrt(1 - x^2 + x^4) = π/2` and `5^(1+tan^-1x)` = 4 + [cos–1x] is ______ (where [.] denotes greatest integer function)
`cot^-1(sqrt(cos α)) - tan^-1 (sqrt(cos α))` = x, then sin x = ______.
If sin–1a + sin–1b + sin–1c = π, then find the value of `asqrt(1 - a^2) + bsqrt(1 - b^2) + csqrt(1 - c^2)`.
If ax + b (sec (tan–1 x)) = c and ay + b (sec.(tan–1 y)) = c, then `(x + y)/(1 - xy)` = ______.
If x ∈ R – {0}, then `tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/(sqrt(1 + x^2) - sqrt(1 - x^2)))`
The value of cos (2cos–1 x + sin–1 x) at x = `1/5` is ______.
If tan–1 2x + tan–1 3x = `π/4`, then x = ______.
`(tan^-1 (sqrt(3)) - sec^-1(-2))/("cosec"^-1(-sqrt(2)) + cos^-1(-1/2))` is equal to ______.
If sin–1x – cos–1x = `π/6`, then x = ______.