Advertisements
Advertisements
प्रश्न
The domain of the function y = sin–1 (– x2) is ______.
विकल्प
[0, 1]
(0, 1)
[–1, 1]
φ
उत्तर
The domain of the function y = sin–1 (– x2) is [–1, 1].
Explanation:
y = sin–1(– x2)
⇒ siny = – x2
i.e. – 1 ≤ – x2 ≤ 1 ......(Since – 1 ≤ sin y ≤ 1)
⇒ 1 ≥ x2 ≥ – 1
⇒ 0 ≤ x2 ≤ 1
⇒ |x| ≤ 1
i.e. – 1 ≤ x ≤ 1
APPEARS IN
संबंधित प्रश्न
Find the principal value of `cos^(-1) (-1/sqrt2)`
In ΔABC, if a = 18, b = 24, c = 30 then find the values of sin `(A/2)`.
In ΔABC, if a = 18, b = 24, c = 30 then find the values of tan `A/2`
Find the principal value of the following: sin-1 `(1/sqrt(2))`
Evaluate the following:
`cos^-1(1/2) + 2sin^-1(1/2)`
Prove the following:
`cos^-1(3/5) + cos^-1(4/5) = pi/(2)`
Prove the following:
`2tan^-1(1/3) = tan^-1(3/4)`
If tan−1x + tan−1y + tan−1z = π, then show that `1/(xy) + 1/(yz) + 1/(zx)` = 1
Prove that cot−1(7) + 2 cot−1(3) = `pi/4`
Find the principal value of the following:
`sin^-1 (- 1/2)`
Find the principal value of the following:
tan-1 (-1)
The principle solutions of equation tan θ = -1 are ______
`tan[2tan^-1 (1/3) - pi/4]` = ______.
`cos^-1 4/5 + tan^-1 3/5` = ______.
If `3tan^-1x +cot^-1x = pi`, then xis equal to ______.
The value of `sin^-1[cos(pi/3)] + sin^-1[tan((5pi)/4)]` is ______.
If 2 tan–1(cos θ) = tan–1(2 cosec θ), then show that θ = π 4, where n is any integer.
Show that `sin^-1 5/13 + cos^-1 3/5 = tan^-1 63/16`
`"sin" 265° - "cos" 265°` is ____________.
The range of sin-1 x + cos-1 x + tan-1 x is ____________.
`"cos" ["tan"^-1 {"sin" ("cot"^-1 "x")}]` is equal to ____________.
If a = `(2sin theta)/(1 + costheta + sintheta)`, then `(1 + sintheta - costheta)/(1 + sintheta)` is
Values of tan–1 – sec–1(–2) is equal to
What is the values of `cos^-1 (cos (7pi)/6)`
If x ∈ R – {0}, then `tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/(sqrt(1 + x^2) - sqrt(1 - x^2)))`
If cos–1 x > sin–1 x, then ______.
`sin[π/3 + sin^-1 (1/2)]` is equal to ______.
The value of `tan(cos^-1 4/5 + tan^-1 2/3)` is ______.
If tan 4θ = `tan(2/θ)`, then the general value of θ is ______.