Advertisements
Advertisements
प्रश्न
The domain of y = cos–1(x2 – 4) is ______.
विकल्प
[3, 5]
[0, π]
`[-sqrt(5), -sqrt(3)] ∩ [-sqrt(5), sqrt(3)]`
`[-sqrt(5), -sqrt(3)] ∪ [-sqrt(3), sqrt(5)]`
उत्तर
The domain of y = cos–1(x2 – 4) is `[-sqrt(5), -sqrt(3)] ∪ [-sqrt(3), sqrt(5)]`.
Explanation:
y = cos–1(x2 – 4)
⇒ cosy = x2 – 4
i.e. – 1 ≤ x2 – 4 ≤ 1 ......(Since – 1 ≤ cos y ≤ 1)
⇒ 3 ≤ x2 ≤ 5
⇒ `sqrt(3) ≤ |x| ≤ sqrt(5)`
⇒ `x∈ [-sqrt(5), -sqrt(3)] ∪ [-sqrt(3), sqrt(5)]`
APPEARS IN
संबंधित प्रश्न
Show that `2sin^-1(3/5) = tan^-1(24/7)`
Find the principal values of `sin^(-1) (-1/2)`
Find the principal value of `cos^(-1) (-1/2)`
Find the value of the following:
`tan^(-1) (tan (7x)/6)`
Find the principal value of `sin^-1(1/sqrt2)`
Evaluate the following:
`cot^-1 1/sqrt3-\text(cosec)^-1(-2)+sec^-1(2/sqrt3)`
In ΔABC, if a = 18, b = 24, c = 30 then find the values of cos `A/2`
In ΔABC, if a = 18, b = 24, c = 30 then find the values of sinA
Prove the following:
`sin^-1(1/sqrt(2)) -3sin^-1(sqrt(3)/2) = -(3π)/(4)`
Prove the following:
`sin^-1(-1/2) + cos^-1(-sqrt(3)/2) = cos^-1(-1/2)`
Find the principal value of the following:
`sec^-1 (-sqrt2)`
Evaluate:
`cos[tan^-1 (3/4)]`
Evaluate: sin`[1/2 cos^-1 (4/5)]`
Express `tan^-1 ((cos x - sin x)/(cos x + sin x))`, 0 < x < π in the simplest form.
Find the principal value of `tan^-1 (sqrt(3))`
The value of cot `(tan^-1 2x + cot^-1 2x)` is ______
`cos^-1 4/5 + tan^-1 3/5` = ______.
The domain of the function defined by f(x) = sin–1x + cosx is ______.
The equation tan–1x – cot–1x = `(1/sqrt(3))` has ______.
Solve the following equation `cos(tan^-1x) = sin(cot^-1 3/4)`
The value of `"cos"^-1 ("cos" ((33 pi)/5))` is ____________.
The range of sin-1 x + cos-1 x + tan-1 x is ____________.
The equation 2cos-1 x + sin-1 x `= (11pi)/6` has ____________.
`"cos"^-1 ("cos" ((7pi)/6))` is equal to ____________.
If |Z1| = |Z2| and arg (Z1) + arg (Z2) = 0, then
If `sin(sin^-1 1/5 + cos^-1 x) = 1`, the what will be the value of x?
If y = `tan^-1 (sqrt(1 + x^2) - sqrt(1 - x^2))/(sqrt(1 + x^2) + sqrt(1 - x^2))`, then `dy/dx` is equal to ______.