Advertisements
Advertisements
प्रश्न
Find the principal value of `tan^-1 (sqrt(3))`
उत्तर
Let y = `tan^-1 (sqrt(3))`
Where `- pi/2 ≤ y ≤ pi/2`
tan y = `sqrt(3)`
= `tan (pi/3)`
y = `pi/3`
∴ The principal value of `tan^-1 (sqrt(3)) = pi/3`
APPEARS IN
संबंधित प्रश्न
Show that `2sin^-1(3/5) = tan^-1(24/7)`
Evaluate the following:
`tan^-1 sqrt(3) - sec^-1 (-2)`
Prove the following:
`tan^-1(1/2) + tan^-1(1/3) = pi/(4)`
Prove the following:
`2tan^-1(1/3) = tan^-1(3/4)`
Express `tan^-1 ((cos x - sin x)/(cos x + sin x))`, 0 < x < π in the simplest form.
Find the principal value of `sec^-1 (- sqrt(2))`
If sin `(sin^-1 1/3 + cos^-1 x) = 1`, then the value of x is ______.
The value of cot (- 1110°) is equal to ______.
`cos^-1 4/5 + tan^-1 3/5` = ______.
Solve for x `tan^-1((1 - x)/(1 + x)) = 1/2 tan^-1x, x > 0`
When `"x" = "x"/2`, then tan x is ____________.
`"sin"^-1 (-1/2)`
`"tan"^-1 (sqrt3)`
The value of `"cos"^-1 ("cos" ((33 pi)/5))` is ____________.
If tan-1 x – tan-1 y = tan-1 A, then A is equal to ____________.
`"cos"^-1 ("cos" ((7pi)/6))` is equal to ____________.
Assertion (A): The domain of the function sec–12x is `(-∞, - 1/2] ∪ pi/2, ∞)`
Reason (R): sec–1(–2) = `- pi/4`
If tan–1 2x + tan–1 3x = `π/4`, then x = ______.
Find the value of `cos(x/2)`, if tan x = `5/12` and x lies in third quadrant.