Advertisements
Advertisements
प्रश्न
Solve for x `tan^-1((1 - x)/(1 + x)) = 1/2 tan^-1x, x > 0`
उत्तर
From given equation
We have `2tan^-1 ((1 - x)/(1 + x)) = tan^-1x`
⇒ `2[tan^-1 1 - tan^-1x] = tan^-1x`
⇒ `2(pi/4) = 3tan^-1x`
⇒ `pi/6 = tan^-1x`
⇒ x = `1/sqrt(3)`
APPEARS IN
संबंधित प्रश्न
Find the principal value of `sec^(-1) (2/sqrt(3))`
Find the set of values of `cosec^-1(sqrt3/2)`
Evaluate the following:
`tan^-1(-1/sqrt3)+cot^-1(1/sqrt3)+tan^-1(sin(-pi/2))`
Find the principal value of the following: tan- 1( - √3)
Evaluate the following:
`"cosec"^-1(-sqrt(2)) + cot^-1(sqrt(3))`
Prove the following:
`cos^-1(3/5) + cos^-1(4/5) = pi/(2)`
Prove the following:
`tan^-1[sqrt((1 - cosθ)/(1 + cosθ))] = θ/(2)`, if θ ∈ (– π, π).
Prove that cot−1(7) + 2 cot−1(3) = `pi/4`
Prove that `2 tan^-1 (1/8) + tan^-1 (1/7) + 2tan^-1 (1/5) = pi/4`
Prove that:
2 tan-1 (x) = `sin^-1 ((2x)/(1 + x^2))`
lf `sqrt3costheta + sintheta = sqrt2`, then the general value of θ is ______
In ΔABC, tan`A/2 = 5/6` and tan`C/2 = 2/5`, then ______
The value of 2 `cot^-1 1/2 - cot^-1 4/3` is ______
`cos(2sin^-1 3/4+cos^-1 3/4)=` ______.
`sin{tan^-1((1 - x^2)/(2x)) + cos^-1((1 - x^2)/(1 + x^2))}` is equal to ______
Show that `cos(2tan^-1 1/7) = sin(4tan^-1 1/3)`
Solve the following equation `cos(tan^-1x) = sin(cot^-1 3/4)`
When `"x" = "x"/2`, then tan x is ____________.
If sin-1 x – cos-1 x `= pi/6,` then x = ____________.
If tan-1 (x – 1) + tan-1 x + tan-1 (x + 1) = tan-1 3x, then the values of x are ____________.
`"sin" ["cot"^-1 {"cos" ("tan"^-1 "x")}] =` ____________.
If `(-1)/sqrt(2) ≤ x ≤ 1/sqrt(2)` then `sin^-1 (2xsqrt(1 - x^2))` is equal to
Find the principal value of `tan^-1 (sqrt(3))`
Values of tan–1 – sec–1(–2) is equal to
`2tan^-1 (cos x) = tan^-1 (2"cosec" x)`, then 'x' will be equal to
Number of values of x satisfying the system of equations `sin^-1sqrt(2 + e^(-2x) - 2e^-x) + sec^-1sqrt(1 - x^2 + x^4) = π/2` and `5^(1+tan^-1x)` = 4 + [cos–1x] is ______ (where [.] denotes greatest integer function)
`cot^-1(sqrt(cos α)) - tan^-1 (sqrt(cos α))` = x, then sin x = ______.
sin [cot–1 (cos (tan–1 x))] = ______.
If y = `tan^-1 (sqrt(1 + x^2) - sqrt(1 - x^2))/(sqrt(1 + x^2) + sqrt(1 - x^2))`, then `dy/dx` is equal to ______.