Advertisements
Advertisements
प्रश्न
Solve for x `tan^-1((1 - x)/(1 + x)) = 1/2 tan^-1x, x > 0`
उत्तर
From given equation
We have `2tan^-1 ((1 - x)/(1 + x)) = tan^-1x`
⇒ `2[tan^-1 1 - tan^-1x] = tan^-1x`
⇒ `2(pi/4) = 3tan^-1x`
⇒ `pi/6 = tan^-1x`
⇒ x = `1/sqrt(3)`
APPEARS IN
संबंधित प्रश्न
Find the principal value of `tan^(-1) (-sqrt3)`
Find the principal value of `cosec^(-1)(-sqrt2)`
Find the value of the following:
`tan^(-1) (tan (7x)/6)`
Find the domain of the following function:
`f(x)=sin^-1x^2`
Evaluate the following:
`tan^-1(tan (5pi)/6)+cos^-1{cos((13pi)/6)}`
Evaluate the following:
`tan^-1(-1/sqrt3)+cot^-1(1/sqrt3)+tan^-1(sin(-pi/2))`
In ΔABC, if a = 18, b = 24, c = 30 then find the values of A(ΔABC)
Prove the following:
`cos^-1(3/5) + cos^-1(4/5) = pi/(2)`
In ΔABC, prove the following:
`(cos A)/a + (cos B)/b + (cos C)/c = (a^2 + b^2 + c^2)/(2abc)`
The principal value of cos−1`(-1/2)` is ______
Evaluate `cos[pi/6 + cos^-1 (- sqrt(3)/2)]`
Find the principal value of the following:
`sec^-1 (-sqrt2)`
Show that `sin^-1 (- 3/5) - sin^-1 (- 8/17) = cos^-1 (84/85)`
Express `tan^-1 [(cos x)/(1 - sin x)], - pi/2 < x < (3pi)/2` in the simplest form.
Find the principal value of `cos^-1 sqrt(3)/2`
Choose the correct alternative:
cos 2θ cos 2ϕ+ sin2 (θ – ϕ) – sin2 (θ + ϕ) is equal to
lf `sqrt3costheta + sintheta = sqrt2`, then the general value of θ is ______
The principle solutions of equation tan θ = -1 are ______
`sin^2(sin^-1 1/2) + tan^2 (sec^-1 2) + cot^2(cosec^-1 4)` = ______.
`sin{tan^-1((1 - x^2)/(2x)) + cos^-1((1 - x^2)/(1 + x^2))}` is equal to ______
If `3tan^-1x +cot^-1x = pi`, then xis equal to ______.
When `"x" = "x"/2`, then tan x is ____________.
Domain and Rariges of cos–1 is:-
What is the principal value of cosec–1(2).
`sin(tan^-1x), |x| < 1` is equal to
If f'(x) = x–1, then find f(x)
The value of `cos^-1(cos(π/2)) + cos^-1(sin((2π)/2))` is ______.
If cos–1 x > sin–1 x, then ______.
If sin–1x – cos–1x = `π/6`, then x = ______.
Solve for x:
5tan–1x + 3cot–1x = 2π