Advertisements
Advertisements
प्रश्न
Find the principal value of the following:
`sec^-1 (-sqrt2)`
उत्तर
Let `sec^-1 (-sqrt2)` = y
`-sqrt2` = sec y
sec y = `- sqrt2`
`1/(cos y) = - sqrt2`
Taking reciprocal cos y = `((-1)/sqrt2)` [where 0 ≤ y ≤ π]
cos y = `cos (pi - pi/4) [cos pi/4 = 1/sqrt2 = cos (180^circ - theta) = - cos theta]`
`= cos ((4pi - pi)/4) = cos (3pi)/4`
∴ The principal value of sec-1 `(- sqrt2)` is `(3pi)/4`
APPEARS IN
संबंधित प्रश्न
Find the principal value of `sin^-1(1/sqrt2)`
In ΔABC, if a = 18, b = 24, c = 30 then find the values of sinA
Find the principal value of the following: `sin^-1 (1/2)`
Prove that `tan^-1 (m/n) - tan^-1 ((m - n)/(m + n)) = pi/4`
Choose the correct alternative:
cos 2θ cos 2ϕ+ sin2 (θ – ϕ) – sin2 (θ + ϕ) is equal to
In Δ ABC, with the usual notations, if sin B sin C = `"bc"/"a"^2`, then the triangle is ______.
Which of the following function has period 2?
Prove that `cot(pi/4 - 2cot^-1 3)` = 7
sin 6θ + sin 4θ + sin 2θ = 0, then θ =
The value of `tan(cos^-1 4/5 + tan^-1 2/3)` is ______.