Advertisements
Advertisements
Question
Find the principal value of the following:
`sec^-1 (-sqrt2)`
Solution
Let `sec^-1 (-sqrt2)` = y
`-sqrt2` = sec y
sec y = `- sqrt2`
`1/(cos y) = - sqrt2`
Taking reciprocal cos y = `((-1)/sqrt2)` [where 0 ≤ y ≤ π]
cos y = `cos (pi - pi/4) [cos pi/4 = 1/sqrt2 = cos (180^circ - theta) = - cos theta]`
`= cos ((4pi - pi)/4) = cos (3pi)/4`
∴ The principal value of sec-1 `(- sqrt2)` is `(3pi)/4`
APPEARS IN
RELATED QUESTIONS
Prove the following:
`tan^-1["cosθ + sinθ"/"cosθ - sinθ"] = pi/(4) + θ, if θ ∈ (- pi/4, pi/4)`
Show that `sin^-1(3/5) + sin^-1(8/17) = cos^-1(36/85)`
Express `tan^-1 [(cos x)/(1 - sin x)], - pi/2 < x < (3pi)/2` in the simplest form.
The principal value of `tan^{-1(sqrt3)}` is ______
If `"x + y" = "x"/4` then (1+ tanx)(1 + tany) is equal to ____________.
`"sin" ["cot"^-1 {"cos" ("tan"^-1 "x")}] =` ____________.
`"cos"^-1 ["cos" (2 "cot"^-1 (sqrt2 - 1))] =` ____________.
If `sqrt(2)` sec θ + tan θ = 1, then the general value of θ is
If f(x) = x5 + 2x – 3, then (f–1)1 (–3) = ______.
If 2 tan–1 (cosx) = tan–1 (2 cosec x), then sin x + cos x is equal to ______.