English

Express tan-1[cosx1-sinx],-π2<x<3π2 in the simplest form. - Mathematics

Advertisements
Advertisements

Question

Express `tan^-1 [(cos x)/(1 - sin x)], - pi/2 < x < (3pi)/2` in the simplest form.

Sum

Solution

`tan^-1 [(cos x)/(1 - sin x)]`

`= tan^-1 [(cos^2  x/2 - sin^2  x/2)/(cos^2  x/2 + sin^2  x/2 - 2 sin  x/2  cos  x/2)]`

`= tan^-1 [(cos^2  x/2 - sin^2  x/2)/(cos  x/2 - sin  x/2)^2]`

`= tan^-1 [((cos  x/2 - sin  x/2)(cos  x/2 + sin  x/2))/(cos  x/2 - sin  x/2)^2]`

[∵ a2 – b2 = (a + b) (a – b)]

`= tan^-1 [(cos  x/2 + sin  x/2)/(cos  x/2 - sin  x/2)]`

`= tan^-1 [((cos  x/2)/(cos  x/2) + (sin  x/2)/(cos  x/2))/((cos  x/2)/(cos  x/2) - (sin  x/2)/(cos  x/2))]`

[∵ Divide each term by cos `x/2`]

`= tan^-1 [(1 + tan  x/2)/(1 - tan x/2)]`

`= tan^-1 [(tan  pi/4 + tan  x/2)/(1 - tan  pi/4 tan  x/2)]`

`= tan^-1  [tan (pi/4 + x/2)] = pi/4 + x/2`

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Trigonometry - Exercise 4.4 [Page 92]

RELATED QUESTIONS

Find the value of the following:

If sin−1 x = y, then


Find the value of the following:

`tan^(-1) (tan  (7x)/6)`


`sin^-1{cos(sin^-1  sqrt3/2)}`


Evaluate: tan `[ 2 tan^-1  (1)/(2) – cot^-1 3]`


In ΔABC prove that `sin  "A"/(2). sin  "B"/(2). sin  "C"/(2) = ["A(ΔABC)"]^2/"abcs"`


Find the principal value of the following: `sin^-1 (1/2)`


Evaluate the following:

`"cosec"^-1(-sqrt(2)) + cot^-1(sqrt(3))`


Prove the following:

`tan^-1(1/2) + tan^-1(1/3) = pi/(4)`


Prove the following:

`tan^-1[sqrt((1 - cosθ)/(1 + cosθ))] = θ/(2)`, if θ ∈ (– π, π).


Find the principal solutions of the following equation:

sin 2θ = `− 1/(sqrt2)`


Find the value of `cos^-1 (1/2) + tan^-1 (1/sqrt(3))`


Prove that sin `[tan^-1 ((1 - x^2)/(2x)) + cos^-1 ((1 - x^2)/(1 + x^2))]` = 1


Evaluate:

`cos[tan^-1 (3/4)]`


Prove that `tan^-1 (m/n) - tan^-1 ((m - n)/(m + n)) = pi/4`


The principle solutions of equation tan θ = -1 are ______ 


In Δ ABC, with the usual notations, if sin B sin C = `"bc"/"a"^2`, then the triangle is ______.


sin[3 sin-1 (0.4)] = ______.


If 2sin2θ = 3cosθ, where 0 ≤ θ ≤ 2π, then θ = ______ 


The value of `cos(pi/4 + x) - cos(pi/4 - x)` is ______.


The domain of y = cos–1(x2 – 4) is ______.


The domain of the function defined by f(x) = sin–1x + cosx is ______.


The equation tan–1x – cot–1x = `(1/sqrt(3))` has ______.


Show that `cos(2tan^-1  1/7) = sin(4tan^-1  1/3)`


Show that `sin^-1  5/13 + cos^-1  3/5 = tan^-1  63/16`


`"cos"^-1 1/2 + 2  "sin"^-1  1/2` is equal to ____________.


`"sin"^-1 (1 - "x") - 2  "sin"^-1  "x" = pi/2`


`"cos"^-1 ["cos" (2  "cot"^-1 (sqrt2 - 1))] =` ____________.


3 tan-1 a is equal to ____________.


The equation 2cos-1 x + sin-1 x `= (11pi)/6` has ____________.


If `"sin"^-1("x"^2 - 7"x" + 12) = "n"pi, AA  "n" in "I"`, then x = ____________.


`"cos" ["tan"^-1 {"sin" ("cot"^-1 "x")}]` is equal to ____________.


Domain and Rariges of cos–1 is:-


Value of `sin(pi/3 - sin^1 (- 1/2))` is equal to


If `sin(sin^-1  1/5 + cos^-1 x) = 1`, the what will be the value of x?


If sin–1a + sin–1b + sin–1c = π, then find the value of `asqrt(1 - a^2) + bsqrt(1 - b^2) + csqrt(1 - c^2)`.


If x ∈ R – {0}, then `tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/(sqrt(1 + x^2) - sqrt(1 - x^2)))`


If y = `tan^-1  (sqrt(1 + x^2) - sqrt(1 - x^2))/(sqrt(1 + x^2) + sqrt(1 - x^2))`, then `dy/dx` is equal to ______.


If –1 ≤ x ≤ 1, the prove that sin–1 x + cos–1 x = `π/2`


Solve for x:

5tan–1x + 3cot–1x = 2π


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×