Advertisements
Advertisements
Question
Express `tan^-1 [(cos x)/(1 - sin x)], - pi/2 < x < (3pi)/2` in the simplest form.
Solution
`tan^-1 [(cos x)/(1 - sin x)]`
`= tan^-1 [(cos^2 x/2 - sin^2 x/2)/(cos^2 x/2 + sin^2 x/2 - 2 sin x/2 cos x/2)]`
`= tan^-1 [(cos^2 x/2 - sin^2 x/2)/(cos x/2 - sin x/2)^2]`
`= tan^-1 [((cos x/2 - sin x/2)(cos x/2 + sin x/2))/(cos x/2 - sin x/2)^2]`
[∵ a2 – b2 = (a + b) (a – b)]
`= tan^-1 [(cos x/2 + sin x/2)/(cos x/2 - sin x/2)]`
`= tan^-1 [((cos x/2)/(cos x/2) + (sin x/2)/(cos x/2))/((cos x/2)/(cos x/2) - (sin x/2)/(cos x/2))]`
[∵ Divide each term by cos `x/2`]
`= tan^-1 [(1 + tan x/2)/(1 - tan x/2)]`
`= tan^-1 [(tan pi/4 + tan x/2)/(1 - tan pi/4 tan x/2)]`
`= tan^-1 [tan (pi/4 + x/2)] = pi/4 + x/2`
RELATED QUESTIONS
Find the value of the following:
If sin−1 x = y, then
Find the value of the following:
`tan^(-1) (tan (7x)/6)`
`sin^-1{cos(sin^-1 sqrt3/2)}`
Evaluate: tan `[ 2 tan^-1 (1)/(2) – cot^-1 3]`
In ΔABC prove that `sin "A"/(2). sin "B"/(2). sin "C"/(2) = ["A(ΔABC)"]^2/"abcs"`
Find the principal value of the following: `sin^-1 (1/2)`
Evaluate the following:
`"cosec"^-1(-sqrt(2)) + cot^-1(sqrt(3))`
Prove the following:
`tan^-1(1/2) + tan^-1(1/3) = pi/(4)`
Prove the following:
`tan^-1[sqrt((1 - cosθ)/(1 + cosθ))] = θ/(2)`, if θ ∈ (– π, π).
Find the principal solutions of the following equation:
sin 2θ = `− 1/(sqrt2)`
Find the value of `cos^-1 (1/2) + tan^-1 (1/sqrt(3))`
Prove that sin `[tan^-1 ((1 - x^2)/(2x)) + cos^-1 ((1 - x^2)/(1 + x^2))]` = 1
Evaluate:
`cos[tan^-1 (3/4)]`
Prove that `tan^-1 (m/n) - tan^-1 ((m - n)/(m + n)) = pi/4`
The principle solutions of equation tan θ = -1 are ______
In Δ ABC, with the usual notations, if sin B sin C = `"bc"/"a"^2`, then the triangle is ______.
sin[3 sin-1 (0.4)] = ______.
If 2sin2θ = 3cosθ, where 0 ≤ θ ≤ 2π, then θ = ______
The value of `cos(pi/4 + x) - cos(pi/4 - x)` is ______.
The domain of y = cos–1(x2 – 4) is ______.
The domain of the function defined by f(x) = sin–1x + cosx is ______.
The equation tan–1x – cot–1x = `(1/sqrt(3))` has ______.
Show that `cos(2tan^-1 1/7) = sin(4tan^-1 1/3)`
Show that `sin^-1 5/13 + cos^-1 3/5 = tan^-1 63/16`
`"cos"^-1 1/2 + 2 "sin"^-1 1/2` is equal to ____________.
`"sin"^-1 (1 - "x") - 2 "sin"^-1 "x" = pi/2`
`"cos"^-1 ["cos" (2 "cot"^-1 (sqrt2 - 1))] =` ____________.
3 tan-1 a is equal to ____________.
The equation 2cos-1 x + sin-1 x `= (11pi)/6` has ____________.
If `"sin"^-1("x"^2 - 7"x" + 12) = "n"pi, AA "n" in "I"`, then x = ____________.
`"cos" ["tan"^-1 {"sin" ("cot"^-1 "x")}]` is equal to ____________.
Domain and Rariges of cos–1 is:-
Value of `sin(pi/3 - sin^1 (- 1/2))` is equal to
If `sin(sin^-1 1/5 + cos^-1 x) = 1`, the what will be the value of x?
If sin–1a + sin–1b + sin–1c = π, then find the value of `asqrt(1 - a^2) + bsqrt(1 - b^2) + csqrt(1 - c^2)`.
If x ∈ R – {0}, then `tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/(sqrt(1 + x^2) - sqrt(1 - x^2)))`
If y = `tan^-1 (sqrt(1 + x^2) - sqrt(1 - x^2))/(sqrt(1 + x^2) + sqrt(1 - x^2))`, then `dy/dx` is equal to ______.
If –1 ≤ x ≤ 1, the prove that sin–1 x + cos–1 x = `π/2`
Solve for x:
5tan–1x + 3cot–1x = 2π