Advertisements
Advertisements
Question
Find the value of `cos^-1 (1/2) + tan^-1 (1/sqrt(3))`
Solution
Let `cos^-1 (1/2)` = x
∴ cos x = `1/2`
= `cos pi/3`
The principal value branch of cos−1 is [0, π] and `0 ≤ pi/3 ≤ pi`
∴ x = `pi/3`
∴ `cos^-1 1/2 = pi/3`
Let `tan^-1 (1/sqrt(3))` = y
∴ tan y = `1/sqrt(3`
= tan `pi/6`
The principal value branch of tan−1 is `((-pi)/2, pi/2)` and `- pi/2, < pi/6 < pi/2`
∴ y = `pi/6`
∴ `tan^-1 (1/sqrt(3)) = pi/6`
∴ `cos^-1 (1/2) + tan^-1 (1/sqrt(3)) = pi/3 + pi/6`
= `(3pi)/6`
= `pi/2`
APPEARS IN
RELATED QUESTIONS
Find the principal value of `tan^(-1) (-sqrt3)`
Find the principal value of `cos^(-1) (-1/2)`
Find the principal value of `sec^(-1) (2/sqrt(3))`
Find the principal value of `cot^(-1) (sqrt3)`
Find the principal value of `sin^-1(1/sqrt2)`
Find the domain of the following function:
`f(x)=sin^-1x^2`
Find the domain of the following function:
`f(x)=sin^-1x+sin^-1 2x`
Evaluate the following:
`tan^-1(-1/sqrt3)+tan^-1(-sqrt3)+tan^-1(sin(-pi/2))`
Find the set of values of `cosec^-1(sqrt3/2)`
In ΔABC, if a = 18, b = 24, c = 30 then find the values of cos `A/2`
In ΔABC, if a = 18, b = 24, c = 30 then find the values of A(ΔABC)
In ΔABC, if a = 18, b = 24, c = 30 then find the values of sinA
In ΔABC prove that `(b + c - a) tan "A"/(2) = (c + a - b)tan "B"/(2) = (a + b - c)tan "C"/(2)`.
In ΔABC prove that `sin "A"/(2). sin "B"/(2). sin "C"/(2) = ["A(ΔABC)"]^2/"abcs"`
Find the principal value of the following: tan-1(– 1)
Evaluate the following:
`tan^-1(1) + cos^-1(1/2) + sin^-1(1/2)`
Evaluate the following:
`"cosec"^-1(-sqrt(2)) + cot^-1(sqrt(3))`
Prove the following:
`sin^-1(1/sqrt(2)) -3sin^-1(sqrt(3)/2) = -(3π)/(4)`
Prove the following:
`sin^-1(3/5) + cos^-1(12/13) = sin^-1(56/65)`
Prove the following:
`cos^-1(3/5) + cos^-1(4/5) = pi/(2)`
Find the principal solutions of the following equation:
sin 2θ = `− 1/(sqrt2)`
If `sin(sin^-1(1/5) + cos^-1(x))` = 1, then x = ______
Prove that `2 tan^-1 (3/4) = tan^-1(24/7)`
Evaluate:
`sin[cos^-1 (3/5)]`
Find the principal value of the following:
`sin^-1 (- 1/2)`
Find the principal value of the following:
tan-1 (-1)
Prove that:
`tan^-1 (4/3) + tan^-1 (1/7) = pi/4`
Solve: tan-1 (x + 1) + tan-1 (x – 1) = `tan^-1 (4/7)`
Evaluate:
`cos[tan^-1 (3/4)]`
Evaluate: `cos (sin^-1 (4/5) + sin^-1 (12/13))`
Prove that `tan^-1 (m/n) - tan^-1 ((m - n)/(m + n)) = pi/4`
Show that `sin^-1 (- 3/5) - sin^-1 (- 8/17) = cos^-1 (84/85)`
A man standing directly opposite to one side of a road of width x meter views a circular shaped traffic green signal of diameter ‘a’ meter on the other side of the road. The bottom of the green signal Is ‘b’ meter height from the horizontal level of viewer’s eye. If ‘a’ denotes the angle subtended by the diameter of the green signal at the viewer’s eye, then prove that α = `tan^-1 (("a" + "b")/x) - tan^-1 ("b"/x)`
`sin^-1x + sin^-1 1/x + cos^-1x + cos^-1 1/x` = ______
In ΔABC, tan`A/2 = 5/6` and tan`C/2 = 2/5`, then ______
In Δ ABC, with the usual notations, if sin B sin C = `"bc"/"a"^2`, then the triangle is ______.
sin[3 sin-1 (0.4)] = ______.
Which of the following function has period 2?
The value of 2 `cot^-1 1/2 - cot^-1 4/3` is ______
If 2tan-1 (cos x) = tan-1 (cosec2 x), then x = ______.
The principal value of `sin^-1 (sin (3pi)/4)` is ______.
In a triangle ABC, ∠C = 90°, then the value of `tan^-1 ("a"/("b + c")) + tan^-1("b"/("c + a"))` is ______.
If `tan^-1x + tan^-1y = (4pi)/5`, then `cot^-1x + cot^-1y` equals ______.
`(sin^-1(-1/2) + tan^-1(-1/sqrt(3)))/(sec^-1 (-2/sqrt(3)) + cos^-1(1/sqrt(2))` = ______.
If 2 tan–1(cos θ) = tan–1(2 cosec θ), then show that θ = π 4, where n is any integer.
Solve the following equation `cos(tan^-1x) = sin(cot^-1 3/4)`
Prove that `tan^-1 1/4 + tan^-1 2/9 = sin^-1 1/sqrt(5)`
All trigonometric functions have inverse over their respective domains.
If `"x + y" = "x"/4` then (1+ tanx)(1 + tany) is equal to ____________.
If `"cos"^-1 "x + sin"^-1 "x" = pi`, then the value of x is ____________.
If tan-1 3 + tan-1 x = tan-1 8, then x = ____________.
`"tan"^-1 (sqrt3)`
The range of sin-1 x + cos-1 x + tan-1 x is ____________.
`"cos" ["tan"^-1 {"sin" ("cot"^-1 "x")}]` is equal to ____________.
`2"tan"^-1 ("cos x") = "tan"^-1 (2 "cosec x")`
The equation of the tangent to the curve given by x = a sin3t, y = bcos3t at a point where t = `pi/2` is
If A = `[(cosx, sinx),(-sinx, cosx)]`, then A1 A–1 is
What is the principal value of cosec–1(2).
Find the value, if sin–1x = y, then `->`:-
Values of tan–1 – sec–1(–2) is equal to
`tan^-1 (1 - x)/(1 + x) = 1/2tan^-1x, (x > 0)`, x then will be equal to.
Value of `sin(pi/3 - sin^1 (- 1/2))` is equal to
Assertion (A): The domain of the function sec–12x is `(-∞, - 1/2] ∪ pi/2, ∞)`
Reason (R): sec–1(–2) = `- pi/4`
Let x = sin–1(sin8) + cos–1(cos11) + tan–1(tan7), and x = k(π – 2.4) for an integer k, then the value of k is ______.
Number of values of x which lie in [0, 2π] and satisfy the equation
`(cos x/4 - 2sinx) sinx + (1 + sin x/4 - 2cosx)cosx` = 0
If 2 tan–1 (cosx) = tan–1 (2 cosec x), then sin x + cos x is equal to ______.
If y = `tan^-1 (sqrt(1 + x^2) - sqrt(1 - x^2))/(sqrt(1 + x^2) + sqrt(1 - x^2))`, then `dy/dx` is equal to ______.
Find the value of `cos(x/2)`, if tan x = `5/12` and x lies in third quadrant.
If sin–1x – cos–1x = `π/6`, then x = ______.
Prove that:
tan–1x + tan–1y = `π + tan^-1((x + y)/(1 - xy))`, provided x > 0, y > 0, xy > 1
The value of `tan(cos^-1 4/5 + tan^-1 2/3)` is ______.