English

In ΔABC, if a = 18, b = 24, c = 30 then find the values of sinA - Mathematics and Statistics

Advertisements
Advertisements

Question

In ΔABC, if a = 18, b = 24, c = 30 then find the values of sinA

Sum

Solution

Given : a = 18, b = 24 and c = 30
∴ 2s = a + b + c
= 18 + 24 + 30
= 72
∴ s = 36
216 = `(1)/(2)`(24)(30) sinA

∴ sinA = `(216)/(12 xx 30)`

= `(216)/(360)`

= `(3)/(5)`.

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Trigonometric Functions - Exercise 3.2 [Page 88]

APPEARS IN

RELATED QUESTIONS

Find the principal value of  `cos^(-1) (sqrt3/2)`


Find the principal value of  `cos^(-1) (-1/2)`


Find the value of the following:

`tan^(-1)(1) + cos^(-1) (-1/2) + sin^(-1) (-1/2)`


Prove that:

`tan^-1  ((sqrt(1 + x) - sqrt(1 - x))/(sqrt(1 + x) + sqrt(1 - x))) = pi/4 - 1/2 cos^-1 x`, for `- 1/sqrt2 <= x <= 1`

[Hint: put x =  cos 2θ]


Find the domain of the following function:

`f(x)sin^-1sqrt(x^2-1)`


Find the domain of the following function:

`f(x)=sin^-1x+sin^-1 2x`


If `sin^-1 x + sin^-1 y+sin^-1 z+sin^-1 t=2pi` , then find the value of x2 + y2 + z2 + t2 


Evaluate the following:

`tan^-1(-1/sqrt3)+tan^-1(-sqrt3)+tan^-1(sin(-pi/2))`


Evaluate: tan `[ 2 tan^-1  (1)/(2) – cot^-1 3]`


In ΔABC, if a = 18, b = 24, c = 30 then find the values of cosA


In ΔABC, if a = 18, b = 24, c = 30 then find the values of A(ΔABC)


In ΔABC prove that `(b + c - a) tan  "A"/(2) = (c + a - b)tan  "B"/(2) = (a + b - c)tan  "C"/(2)`.


In ΔABC prove that `sin  "A"/(2). sin  "B"/(2). sin  "C"/(2) = ["A(ΔABC)"]^2/"abcs"`


Find the principal value of the following: tan- 1( - √3)


Find the principal value of the following: cos- 1`(-1/2)`


Evaluate the following:

`tan^-1(1) + cos^-1(1/2) + sin^-1(1/2)`


Evaluate the following:

`tan^-1 sqrt(3) - sec^-1 (-2)`


Prove the following:

`sin^-1(-1/2) + cos^-1(-sqrt(3)/2) = cos^-1(-1/2)`


Prove the following: 

`2tan^-1(1/3) = tan^-1(3/4)`


Find the principal solutions of the following equation:
tan 5θ = -1


The principal value of cos−1`(-1/2)` is ______


`tan^-1(tan  (7pi)/6)` = ______


Prove that `2 tan^-1 (3/4) = tan^-1(24/7)`


Find the value of `cos^-1 (1/2) + tan^-1 (1/sqrt(3))`


Evaluate `cos[pi/6 + cos^-1 (- sqrt(3)/2)]`


If tan−1x + tan−1y + tan−1z = π, then show that `1/(xy) + 1/(yz) + 1/(zx)` = 1


Prove that sin `[tan^-1 ((1 - x^2)/(2x)) + cos^-1 ((1 - x^2)/(1 + x^2))]` = 1


Show that `sin^-1(3/5)  + sin^-1(8/17) = cos^-1(36/85)`


Prove that `2 tan^-1 (1/8) + tan^-1 (1/7) + 2tan^-1 (1/5) = pi/4`


Find the principal value of the following:

cosec-1 (2)


Find the principal value of the following:

`sec^-1 (-sqrt2)`


Prove that:

`tan^-1 (4/3) + tan^-1 (1/7) = pi/4`


Evaluate:

`cos[tan^-1 (3/4)]`


Express `tan^-1 [(cos x)/(1 - sin x)], - pi/2 < x < (3pi)/2` in the simplest form.


Find the principal value of cosec–1(– 1)


A man standing directly opposite to one side of a road of width x meter views a circular shaped traffic green signal of diameter ‘a’ meter on the other side of the road. The bottom of the green signal Is ‘b’ meter height from the horizontal level of viewer’s eye. If ‘a’ denotes the angle subtended by the diameter of the green signal at the viewer’s eye, then prove that α = `tan^-1 (("a" + "b")/x) - tan^-1 ("b"/x)`


Choose the correct alternative:
cos 2θ cos 2ϕ+ sin2 (θ – ϕ) – sin2 (θ + ϕ) is equal to


The principal value of `tan^{-1(sqrt3)}` is ______  


The value of cot (- 1110°) is equal to ______.


`cos(2sin^-1  3/4+cos^-1  3/4)=` ______.


The value of `sin^-1(cos  (53pi)/5)` is ______ 


The value of `cos(pi/4 + x) - cos(pi/4 - x)` is ______.


The value of `sin^-1[cos(pi/3)] + sin^-1[tan((5pi)/4)]` is ______.


Show that `cos(2tan^-1  1/7) = sin(4tan^-1  1/3)`


All trigonometric functions have inverse over their respective domains.


When `"x" = "x"/2`, then tan x is ____________.


`"sin"^2 25° +  "sin"^2 65°` is equal to ____________.


`("cos" 8° -  "sin" 8°)/("cos" 8° +  "sin" 8°)`  is equal to ____________.


If sin-1 x – cos-1 x `= pi/6,` then x = ____________.


`"sin"^-1 (-1/2)`


`"tan"^-1 (sqrt3)`


`2  "tan"^-1 ("cos x") = "tan"^-1 (2  "cosec x")`


The value of `"cos"^-1 ("cos" ((33 pi)/5))` is ____________.


The range of sin-1 x + cos-1 x + tan-1 x is ____________.


The equation 2cos-1 x + sin-1 x `= (11pi)/6` has ____________.


`"cos"^-1 ("cos" ((7pi)/6))` is equal to ____________.


If a = `(2sin theta)/(1 + costheta + sintheta)`, then `(1 + sintheta - costheta)/(1 + sintheta)` is 


If A = `[(cosx, sinx),(-sinx, cosx)]`, then A1 A–1 is 


Which of the following functions is inverse of itself?


If `(-1)/sqrt(2) ≤ x ≤ 1/sqrt(2)` then `sin^-1 (2xsqrt(1 - x^2))` is equal to


Values of tan–1 – sec–1(–2) is equal to


`2tan^-1 (cos x) = tan^-1 (2"cosec"  x)`, then 'x' will be equal to


If `sin(sin^-1  1/5 + cos^-1 x) = 1`, the what will be the value of x?


Assertion (A): The domain of the function sec–12x is `(-∞, - 1/2] ∪ pi/2, ∞)`

Reason (R): sec–1(–2) = `- pi/4`


If θ = `sin^-1((2x)/(1 + x^2)) + cos^-1((1 - x^2)/(1 + x^2))`, for `x ≥ 3/2` then the absolute value of `((cosθ + tanθ + 4)/secθ)` is ______.


Let x = sin–1(sin8) + cos–1(cos11) + tan–1(tan7), and x = k(π – 2.4) for an integer k, then the value of k is ______.


Number of values of x which lie in [0, 2π] and satisfy the equation

`(cos  x/4 - 2sinx) sinx + (1 + sin  x/4 - 2cosx)cosx` = 0


Derivative of `tan^-1(x/sqrt(1 - x^2))` with respect sin–1(3x – 4x3) is ______.


If y = `tan^-1  (sqrt(1 + x^2) - sqrt(1 - x^2))/(sqrt(1 + x^2) + sqrt(1 - x^2))`, then `dy/dx` is equal to ______.


If tan 4θ = `tan(2/θ)`, then the general value of θ is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×