Advertisements
Advertisements
Question
Find the value of the following:
`tan^(-1)(1) + cos^(-1) (-1/2) + sin^(-1) (-1/2)`
Solution 1
Let `tan^(-1) (1)` = x Then tan x= 1 = tan `pi/4`
`:. tan^(-1) (1) = pi/4`
Let `cos^(-1) (-1/2) = y` Then, `cos y = -1/2 = -cos(pi/3) = cos(pi - pi/3) = cos ((2pi)/3)`
`:. cos^(-1) (- 1/2) = (2pi)/3`
Let `sin^(-1) (-1/2) = z`. Then `sin z =-1/2 = -sin(pi/6) = sin(-pi/6)`
`:. sin^(-1)(-1/2) = - pi/6`
`:. tan^(-1) (1) + cos^(-1) (-1/2) + sin^(-1) (-1/2)`
`= pi/4 + (2pi)/3 - pi/6`
`= (3pi + 8pi - 2pi)/12 `
`= (9pi)/12 = (3pi)/4`
Solution 2
`"tan"^-1 (1) + "cos"^-1 (-1/2) + "sin"^-1 (-1/2)`
`= "tan"^-1 ("tan" pi/4) + "cos"^-1 ("cos" (2pi)/3) + "sin"^-1 "sin" ((-pi)/6)`
`= pi/4 + (2pi)/3 + ((-pi)/6)`
`= (3pi + 8pi - 2pi)/12`
`= (9 pi)/12 = (3 pi)/4`
APPEARS IN
RELATED QUESTIONS
Find the principal value of `tan^(-1) (-sqrt3)`
Find the principal value of `cos^(-1) (-1/2)`
In ΔABC, if a = 18, b = 24, c = 30 then find the values of A(ΔABC)
In ΔABC prove that `(b + c - a) tan "A"/(2) = (c + a - b)tan "B"/(2) = (a + b - c)tan "C"/(2)`.
Find the principal value of the following: tan- 1( - √3)
Evaluate the following:
`cos^-1(1/2) + 2sin^-1(1/2)`
Prove the following:
`sin^-1(-1/2) + cos^-1(-sqrt(3)/2) = cos^-1(-1/2)`
Evaluate `cos[pi/6 + cos^-1 (- sqrt(3)/2)]`
Find the principal value of the following:
`sec^-1 (-sqrt2)`
Solve `tan^-1 2x + tan^-1 3x = pi/4`
Evaluate: `cos (sin^-1 (4/5) + sin^-1 (12/13))`
Prove that `tan^-1 (m/n) - tan^-1 ((m - n)/(m + n)) = pi/4`
In Δ ABC, with the usual notations, if sin B sin C = `"bc"/"a"^2`, then the triangle is ______.
If 2tan-1 (cos x) = tan-1 (cosec2 x), then x = ______.
If sin `(sin^-1 1/3 + cos^-1 x) = 1`, then the value of x is ______.
`tan[2tan^-1 (1/3) - pi/4]` = ______.
`(sin^-1(-1/2) + tan^-1(-1/sqrt(3)))/(sec^-1 (-2/sqrt(3)) + cos^-1(1/sqrt(2))` = ______.
The value of `sin^-1(cos (53pi)/5)` is ______
The domain of the function y = sin–1 (– x2) is ______.
Prove that `tan^-1 1/4 + tan^-1 2/9 = sin^-1 1/sqrt(5)`
All trigonometric functions have inverse over their respective domains.
`"sin" 265° - "cos" 265°` is ____________.
If tan-1 3 + tan-1 x = tan-1 8, then x = ____________.
`"sin"^-1 (-1/2)`
`"cos"^-1 1/2 + 2 "sin"^-1 1/2` is equal to ____________.
`"cos"^-1 ["cos" (2 "cot"^-1 (sqrt2 - 1))] =` ____________.
3 tan-1 a is equal to ____________.
The equation 2cos-1 x + sin-1 x `= (11pi)/6` has ____________.
If tan-1 x – tan-1 y = tan-1 A, then A is equal to ____________.
If A = `[(cosx, sinx),(-sinx, cosx)]`, then A1 A–1 is
`sin(tan^-1x), |x| < 1` is equal to
`tan^-1 (1 - x)/(1 + x) = 1/2tan^-1x, (x > 0)`, x then will be equal to.
If `sin(sin^-1 1/5 + cos^-1 x) = 1`, the what will be the value of x?
Consider f(x) = sin–1[2x] + cos–1([x] – 1) (where [.] denotes greatest integer function.) If domain of f(x) is [a, b) and the range of f(x) is {c, d} then `a + b + (2d)/c` is equal to ______. (where c < d)
If ax + b (sec (tan–1 x)) = c and ay + b (sec.(tan–1 y)) = c, then `(x + y)/(1 - xy)` = ______.
Derivative of `tan^-1(x/sqrt(1 - x^2))` with respect sin–1(3x – 4x3) is ______.