English

In ΔABC prove that (b+c-a)tan A2=(c+a-b)tan B2=(a+b-c)tan C2. - Mathematics and Statistics

Advertisements
Advertisements

Question

In ΔABC prove that `(b + c - a) tan  "A"/(2) = (c + a - b)tan  "B"/(2) = (a + b - c)tan  "C"/(2)`.

Sum

Solution

`(b + c - a) tan  "A"/(2)`
= `(a + b + c - 2a). sqrt(((s - b)(s - c))/(s(s - a)`

= `(2s - 2a).sqrt(((s - b)(s - c))/(s(s - a)`

= `2sqrt(((s - a)(s - b)(s - c))/s`  ....(1)

`(c + a - b) tan  "B"/(2)`
= `(a + b + c - 2b). sqrt(((s - a)(s - c))/(s(s - b)`

= `(2s - 2b).sqrt(((s - a)(s - c))/(s(s - b)`

= `2sqrt(((s - a)(s - b)(s - c))/s`                 ...(2)

`(a + b - c) tan  "C"/(2)`
= `(a + b + c - 2c). sqrt(((s - a)(s - b))/(s(s - c)`

= `(2s - 2c).sqrt(((s - a)(s - b))/(s(s - c)`

= `2sqrt(((s - a)(s - b)(s - c))/s`                 ...(3)

From (1), (2) an (3), we get

`(b + c - a)tan  "A"/(2) = (c + a - b)tan  "B"/(2) = (a + b - c)tan  "C"/(2)`.

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Trigonometric Functions - Exercise 3.2 [Page 88]

APPEARS IN

RELATED QUESTIONS

If `sin^-1(1-x) -2sin^-1x = pi/2` then x is

  1. -1/2
  2. 1
  3. 0
  4. 1/2
 

Show that `2sin^-1(3/5) = tan^-1(24/7)`


Find the principal value of cosec−1 (2)


Find the principal value of `tan^(-1) (-sqrt3)`


Find the value of the following:

`cos^(-1) (cos  (13pi)/6)`


Prove that:

`tan^-1  ((sqrt(1 + x) - sqrt(1 - x))/(sqrt(1 + x) + sqrt(1 - x))) = pi/4 - 1/2 cos^-1 x`, for `- 1/sqrt2 <= x <= 1`

[Hint: put x =  cos 2θ]


`sin^-1{cos(sin^-1  sqrt3/2)}`


Find the domain of the following function:

`f(x)=sin^-1x^2`

 


Find the domain of the following function:

`f(x) = sin^-1x + sinx`


Evaluate the following:

`tan^-1 1+cos^-1 (-1/2)+sin^-1(-1/2)`


Find the set of values of `cosec^-1(sqrt3/2)`


Find the domain of `f(x)=cotx+cot^-1x`


Prove that:
cot−1 7 + cot​−1 8 + cot​−1 18 = cot​−1 3 .


Solve for x:
`tan^-1 [(x-1),(x-2)] + tan^-1 [(x+1),(x+2)] = x/4`


In ΔABC, if a = 18, b = 24, c = 30 then find the values of cosA


In ΔABC, if a = 18, b = 24, c = 30 then find the values of sin `(A/2)`.


In ΔABC, if a = 18, b = 24, c = 30 then find the values of A(ΔABC)


In ΔABC prove that `sin  "A"/(2). sin  "B"/(2). sin  "C"/(2) = ["A(ΔABC)"]^2/"abcs"`


Find the principal value of the following: cosec- 1(2)


Evaluate the following:

`cos^-1(1/2) + 2sin^-1(1/2)`


Evaluate the following:

`tan^-1 sqrt(3) - sec^-1 (-2)`


Prove the following: 

`sin^-1(1/sqrt(2)) -3sin^-1(sqrt(3)/2) = -(3π)/(4)`


Prove the following: 

`2tan^-1(1/3) = tan^-1(3/4)`


Prove the following:

`tan^-1[sqrt((1 - cosθ)/(1 + cosθ))] = θ/(2)`, if θ ∈ (– π, π).


The principal value of sin−1`(1/2)` is ______


If `sin(sin^-1(1/5) + cos^-1(x))` = 1, then x = ______


Evaluate cot(tan−1(2x) + cot−1(2x))


Find the value of `cos^-1 (1/2) + tan^-1 (1/sqrt(3))`


Prove that cot−1(7) + 2 cot−1(3) = `pi/4`


Show that `sin^-1(3/5)  + sin^-1(8/17) = cos^-1(36/85)`


Find the principal value of the following:

cosec-1 (2)


Show that `tan^-1 (1/2) + tan^-1 (2/11) = tan^-1 (3/4)`


Show that `sin^-1 (- 3/5) - sin^-1 (- 8/17) = cos^-1 (84/85)`


Find the principal value of cosec–1(– 1)


`sin^-1x + sin^-1  1/x + cos^-1x + cos^-1  1/x` = ______


The principle solutions of equation tan θ = -1 are ______ 


If `sin^-1  3/5 + cos^-1  12/13 = sin^-1 P`, then P is equal to ______ 


`tan[2tan^-1 (1/3) - pi/4]` = ______.


The value of cot (- 1110°) is equal to ______.


If `tan^-1x + tan^-1y = (4pi)/5`, then `cot^-1x + cot^-1y` equals ______.


The domain of the function defined by f(x) = sin–1x + cosx is ______.


Show that `2tan^-1 (-3) = (-pi)/2 + tan^-1 ((-4)/3)`


If 2 tan–1(cos θ) = tan–1(2 cosec θ), then show that θ = π 4, where n is any integer.


All trigonometric functions have inverse over their respective domains.


When `"x" = "x"/2`, then tan x is ____________.


`("cos" 8° -  "sin" 8°)/("cos" 8° +  "sin" 8°)`  is equal to ____________.


`"tan"^-1 (sqrt3)`


If tan-1 (x – 1) + tan-1 x + tan-1 (x + 1) = tan-1 3x, then the values of x are ____________.


`2  "tan"^-1 ("cos x") = "tan"^-1 (2  "cosec x")`


`"sin" ["cot"^-1 {"cos" ("tan"^-1  "x")}] =` ____________.


The range of sin-1 x + cos-1 x + tan-1 x is ____________.


Find the value of sec2 (tan-1 2) + cosec2 (cot-1 3) ____________.


The equation 2cos-1 x + sin-1 x `= (11pi)/6` has ____________.


If `"sin"^-1("x"^2 - 7"x" + 12) = "n"pi, AA  "n" in "I"`, then x = ____________.


`"cos" ["tan"^-1 {"sin" ("cot"^-1 "x")}]` is equal to ____________.


If `"cot"^-1 (sqrt"cos" alpha) - "tan"^-1 (sqrt "cos" alpha) = "x",` then sinx is equal to ____________.


`"cos"^-1 ("cos" ((7pi)/6))` is equal to ____________.


The equation of the tangent to the curve given by x = a sin3t, y = bcos3t at a point where t = `pi/2` is


If `sqrt(2)` sec θ + tan θ = 1, then the general value of θ is


Find the value, if sin–1x = y, then `->`:-


`tan^-1  (1 - x)/(1 + x) = 1/2tan^-1x, (x > 0)`, x then will be equal to.


`2tan^-1 (cos x) = tan^-1 (2"cosec"  x)`, then 'x' will be equal to


If `sin(sin^-1  1/5 + cos^-1 x) = 1`, the what will be the value of x?


If f'(x) = x–1, then find f(x)


If θ = `sin^-1((2x)/(1 + x^2)) + cos^-1((1 - x^2)/(1 + x^2))`, for `x ≥ 3/2` then the absolute value of `((cosθ + tanθ + 4)/secθ)` is ______.


If ax + b (sec (tan–1 x)) = c and ay + b (sec.(tan–1 y)) = c, then `(x + y)/(1 - xy)` = ______.


If –1 ≤ x ≤ 1, the prove that sin–1 x + cos–1 x = `π/2`


`sin[π/3 + sin^-1 (1/2)]` is equal to ______.


Prove that:

tan–1x + tan–1y = `π + tan^-1((x + y)/(1 - xy))`, provided x > 0, y > 0, xy > 1


The value of `tan(cos^-1  4/5 + tan^-1  2/3)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×