Advertisements
Advertisements
Question
In ΔABC prove that `(b + c - a) tan "A"/(2) = (c + a - b)tan "B"/(2) = (a + b - c)tan "C"/(2)`.
Solution
`(b + c - a) tan "A"/(2)`
= `(a + b + c - 2a). sqrt(((s - b)(s - c))/(s(s - a)`
= `(2s - 2a).sqrt(((s - b)(s - c))/(s(s - a)`
= `2sqrt(((s - a)(s - b)(s - c))/s` ....(1)
`(c + a - b) tan "B"/(2)`
= `(a + b + c - 2b). sqrt(((s - a)(s - c))/(s(s - b)`
= `(2s - 2b).sqrt(((s - a)(s - c))/(s(s - b)`
= `2sqrt(((s - a)(s - b)(s - c))/s` ...(2)
`(a + b - c) tan "C"/(2)`
= `(a + b + c - 2c). sqrt(((s - a)(s - b))/(s(s - c)`
= `(2s - 2c).sqrt(((s - a)(s - b))/(s(s - c)`
= `2sqrt(((s - a)(s - b)(s - c))/s` ...(3)
From (1), (2) an (3), we get
`(b + c - a)tan "A"/(2) = (c + a - b)tan "B"/(2) = (a + b - c)tan "C"/(2)`.
APPEARS IN
RELATED QUESTIONS
If `sin^-1(1-x) -2sin^-1x = pi/2` then x is
- -1/2
- 1
- 0
- 1/2
Show that `2sin^-1(3/5) = tan^-1(24/7)`
Find the principal value of cosec−1 (2)
Find the principal value of `tan^(-1) (-sqrt3)`
Find the value of the following:
`cos^(-1) (cos (13pi)/6)`
Prove that:
`tan^-1 ((sqrt(1 + x) - sqrt(1 - x))/(sqrt(1 + x) + sqrt(1 - x))) = pi/4 - 1/2 cos^-1 x`, for `- 1/sqrt2 <= x <= 1`
[Hint: put x = cos 2θ]
`sin^-1{cos(sin^-1 sqrt3/2)}`
Find the domain of the following function:
`f(x)=sin^-1x^2`
Find the domain of the following function:
`f(x) = sin^-1x + sinx`
Evaluate the following:
`tan^-1 1+cos^-1 (-1/2)+sin^-1(-1/2)`
Find the set of values of `cosec^-1(sqrt3/2)`
Find the domain of `f(x)=cotx+cot^-1x`
Prove that:
cot−1 7 + cot−1 8 + cot−1 18 = cot−1 3 .
Solve for x:
`tan^-1 [(x-1),(x-2)] + tan^-1 [(x+1),(x+2)] = x/4`
In ΔABC, if a = 18, b = 24, c = 30 then find the values of cosA
In ΔABC, if a = 18, b = 24, c = 30 then find the values of sin `(A/2)`.
In ΔABC, if a = 18, b = 24, c = 30 then find the values of A(ΔABC)
In ΔABC prove that `sin "A"/(2). sin "B"/(2). sin "C"/(2) = ["A(ΔABC)"]^2/"abcs"`
Find the principal value of the following: cosec- 1(2)
Evaluate the following:
`cos^-1(1/2) + 2sin^-1(1/2)`
Evaluate the following:
`tan^-1 sqrt(3) - sec^-1 (-2)`
Prove the following:
`sin^-1(1/sqrt(2)) -3sin^-1(sqrt(3)/2) = -(3π)/(4)`
Prove the following:
`2tan^-1(1/3) = tan^-1(3/4)`
Prove the following:
`tan^-1[sqrt((1 - cosθ)/(1 + cosθ))] = θ/(2)`, if θ ∈ (– π, π).
The principal value of sin−1`(1/2)` is ______
If `sin(sin^-1(1/5) + cos^-1(x))` = 1, then x = ______
Evaluate cot(tan−1(2x) + cot−1(2x))
Find the value of `cos^-1 (1/2) + tan^-1 (1/sqrt(3))`
Prove that cot−1(7) + 2 cot−1(3) = `pi/4`
Show that `sin^-1(3/5) + sin^-1(8/17) = cos^-1(36/85)`
Find the principal value of the following:
cosec-1 (2)
Show that `tan^-1 (1/2) + tan^-1 (2/11) = tan^-1 (3/4)`
Show that `sin^-1 (- 3/5) - sin^-1 (- 8/17) = cos^-1 (84/85)`
Find the principal value of cosec–1(– 1)
`sin^-1x + sin^-1 1/x + cos^-1x + cos^-1 1/x` = ______
The principle solutions of equation tan θ = -1 are ______
If `sin^-1 3/5 + cos^-1 12/13 = sin^-1 P`, then P is equal to ______
`tan[2tan^-1 (1/3) - pi/4]` = ______.
The value of cot (- 1110°) is equal to ______.
If `tan^-1x + tan^-1y = (4pi)/5`, then `cot^-1x + cot^-1y` equals ______.
The domain of the function defined by f(x) = sin–1x + cosx is ______.
Show that `2tan^-1 (-3) = (-pi)/2 + tan^-1 ((-4)/3)`
If 2 tan–1(cos θ) = tan–1(2 cosec θ), then show that θ = π 4, where n is any integer.
All trigonometric functions have inverse over their respective domains.
When `"x" = "x"/2`, then tan x is ____________.
`("cos" 8° - "sin" 8°)/("cos" 8° + "sin" 8°)` is equal to ____________.
`"tan"^-1 (sqrt3)`
If tan-1 (x – 1) + tan-1 x + tan-1 (x + 1) = tan-1 3x, then the values of x are ____________.
`2 "tan"^-1 ("cos x") = "tan"^-1 (2 "cosec x")`
`"sin" ["cot"^-1 {"cos" ("tan"^-1 "x")}] =` ____________.
The range of sin-1 x + cos-1 x + tan-1 x is ____________.
Find the value of sec2 (tan-1 2) + cosec2 (cot-1 3) ____________.
The equation 2cos-1 x + sin-1 x `= (11pi)/6` has ____________.
If `"sin"^-1("x"^2 - 7"x" + 12) = "n"pi, AA "n" in "I"`, then x = ____________.
`"cos" ["tan"^-1 {"sin" ("cot"^-1 "x")}]` is equal to ____________.
If `"cot"^-1 (sqrt"cos" alpha) - "tan"^-1 (sqrt "cos" alpha) = "x",` then sinx is equal to ____________.
`"cos"^-1 ("cos" ((7pi)/6))` is equal to ____________.
The equation of the tangent to the curve given by x = a sin3t, y = bcos3t at a point where t = `pi/2` is
If `sqrt(2)` sec θ + tan θ = 1, then the general value of θ is
Find the value, if sin–1x = y, then `->`:-
`tan^-1 (1 - x)/(1 + x) = 1/2tan^-1x, (x > 0)`, x then will be equal to.
`2tan^-1 (cos x) = tan^-1 (2"cosec" x)`, then 'x' will be equal to
If `sin(sin^-1 1/5 + cos^-1 x) = 1`, the what will be the value of x?
If f'(x) = x–1, then find f(x)
If θ = `sin^-1((2x)/(1 + x^2)) + cos^-1((1 - x^2)/(1 + x^2))`, for `x ≥ 3/2` then the absolute value of `((cosθ + tanθ + 4)/secθ)` is ______.
If ax + b (sec (tan–1 x)) = c and ay + b (sec.(tan–1 y)) = c, then `(x + y)/(1 - xy)` = ______.
If –1 ≤ x ≤ 1, the prove that sin–1 x + cos–1 x = `π/2`
`sin[π/3 + sin^-1 (1/2)]` is equal to ______.
Prove that:
tan–1x + tan–1y = `π + tan^-1((x + y)/(1 - xy))`, provided x > 0, y > 0, xy > 1
The value of `tan(cos^-1 4/5 + tan^-1 2/3)` is ______.