Advertisements
Advertisements
Question
If 2 tan–1(cos θ) = tan–1(2 cosec θ), then show that θ = π 4, where n is any integer.
Solution
2 tan–1(cos θ) = tan–1(2 cosec θ)
⇒ `tan^-1 ((2costheta)/(1 - cos^2 theta)) = tan^-1(2 "cosec" theta)` ......`[because 2tan^-1x = tan^-1 (2x)/(1 - x^2)]`
⇒ `(2costheta)/(1 - cos^2theta)` = 2 cosec θ
⇒ `(2costheta)/(sin^2theta) = 2/sintheta`
⇒ cos θ sin θ = sin2θ
⇒ cos θ sin θ – sin2θ = 0
⇒ sin θ(cos θ – sin θ) = 0
⇒ sin θ = 0 or cos θ – sin θ = 0
⇒ sin θ = 0 or 1 – tan θ = 0
⇒ θ = 0 or tan θ = 1
⇒ θ = 0° or θ = `pi/4`
Hence proved.
APPEARS IN
RELATED QUESTIONS
`tan^(-1) sqrt3 - sec^(-1)(-2)` is equal to ______.
Find the value of the following:
`tan^(-1) (tan (7x)/6)`
Evaluate the following:
`cot^-1 1/sqrt3-\text(cosec)^-1(-2)+sec^-1(2/sqrt3)`
Evaluate the following:
`cot^-1{2cos(sin^-1 sqrt3/2)}`
Prove that:
cot−1 7 + cot−1 8 + cot−1 18 = cot−1 3 .
In ΔABC, if a = 18, b = 24, c = 30 then find the values of A(ΔABC)
In ΔABC prove that `(b + c - a) tan "A"/(2) = (c + a - b)tan "B"/(2) = (a + b - c)tan "C"/(2)`.
Find the principal value of the following: cosec- 1(2)
Find the principal solutions of the following equation:
cot 2θ = 0.
Prove that:
2 tan-1 (x) = `sin^-1 ((2x)/(1 + x^2))`
Express `tan^-1 [(cos x)/(1 - sin x)], - pi/2 < x < (3pi)/2` in the simplest form.
Find the principal value of `sin^-1 1/sqrt(2)`
Find the principal value of `sec^-1 (- sqrt(2))`
A man standing directly opposite to one side of a road of width x meter views a circular shaped traffic green signal of diameter ‘a’ meter on the other side of the road. The bottom of the green signal Is ‘b’ meter height from the horizontal level of viewer’s eye. If ‘a’ denotes the angle subtended by the diameter of the green signal at the viewer’s eye, then prove that α = `tan^-1 (("a" + "b")/x) - tan^-1 ("b"/x)`
The principle solutions of equation tan θ = -1 are ______
The principal value of `tan^{-1(sqrt3)}` is ______
`sin^2(sin^-1 1/2) + tan^2 (sec^-1 2) + cot^2(cosec^-1 4)` = ______.
Solve for x `tan^-1((1 - x)/(1 + x)) = 1/2 tan^-1x, x > 0`
The domain of the function defined by f(x) = sin–1x + cosx is ______.
The equation tan–1x – cot–1x = `(1/sqrt(3))` has ______.
Prove that `tan^-1 1/4 + tan^-1 2/9 = sin^-1 1/sqrt(5)`
If tan-1 3 + tan-1 x = tan-1 8, then x = ____________.
If 6sin-1 (x2 – 6x + 8.5) = `pi`, then x is equal to ____________.
`"sin"^-1 (1 - "x") - 2 "sin"^-1 "x" = pi/2`
`"tan"(pi/4 + 1/2 "cos"^-1 "x") + "tan" (pi/4 - 1/2 "cos"^-1 "x") =` ____________.
What is the principal value of cosec–1(2).
Find the principal value of `tan^-1 (sqrt(3))`
Find the value, if sin–1x = y, then `->`:-