हिंदी

If 2 tan–1(cos θ) = tan–1(2 cosec θ), then show that θ = π 4 , where n is any integer. - Mathematics

Advertisements
Advertisements

प्रश्न

If 2 tan–1(cos θ) = tan–1(2 cosec θ), then show that θ = π 4, where n is any integer.

योग

उत्तर

2 tan–1(cos θ) = tan–1(2 cosec θ)

⇒ `tan^-1 ((2costheta)/(1 - cos^2 theta)) = tan^-1(2 "cosec"  theta)`  ......`[because 2tan^-1x = tan^-1  (2x)/(1 - x^2)]`

⇒ `(2costheta)/(1 - cos^2theta)` = 2 cosec θ

⇒ `(2costheta)/(sin^2theta) = 2/sintheta`

⇒ cos θ sin θ = sin2θ

⇒ cos θ sin θ – sin2θ = 0

⇒ sin θ(cos θ – sin θ) = 0

⇒ sin θ = 0 or cos θ – sin θ = 0

⇒ sin θ = 0 or 1 – tan θ = 0

⇒ θ = 0 or tan θ = 1

⇒ θ = 0° or θ = `pi/4`

Hence proved.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Inverse Trigonometric Functions - Exercise [पृष्ठ ३६]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 2 Inverse Trigonometric Functions
Exercise | Q 9 | पृष्ठ ३६

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Show that:

`cos^(-1)(4/5)+cos^(-1)(12/13)=cos^(-1)(33/65)`


Find the principal value of `cot^(-1) (sqrt3)`


Find the principal value of `cosec^(-1)(-sqrt2)`


Find the domain of the following function:

`f(x) = sin^-1x + sinx`


Find the domain of the following function:

`f(x)sin^-1sqrt(x^2-1)`


In ΔABC prove that `(b + c - a) tan  "A"/(2) = (c + a - b)tan  "B"/(2) = (a + b - c)tan  "C"/(2)`.


Find the principal value of the following: tan- 1( - √3)


The principal value of sin−1`(1/2)` is ______


Evaluate cot(tan−1(2x) + cot−1(2x))


Prove that `2 tan^-1 (3/4) = tan^-1(24/7)`


Find the principal value of the following:

`sin^-1 (- 1/2)`


Find the principal value of the following:

`sec^-1 (-sqrt2)`


Prove that `tan^-1 (m/n) - tan^-1 ((m - n)/(m + n)) = pi/4`


Find the principal value of `cos^-1  sqrt(3)/2`


Choose the correct alternative:
cos 2θ cos 2ϕ+ sin2 (θ – ϕ) – sin2 (θ + ϕ) is equal to


The value of 2 `cot^-1  1/2 - cot^-1  4/3` is ______ 


The principal value of `tan^{-1(sqrt3)}` is ______  


Solve the following equation `cos(tan^-1x) = sin(cot^-1  3/4)`


`("cos" 8° -  "sin" 8°)/("cos" 8° +  "sin" 8°)`  is equal to ____________.


If tan-1 x – tan-1 y = tan-1 A, then A is equal to ____________.


`sin[π/3 - sin^-1 (-1/2)]` is equal to:


`"cos" ["tan"^-1 {"sin" ("cot"^-1 "x")}]` is equal to ____________.


`"cos"^-1 ("cos" ((7pi)/6))` is equal to ____________.


`"tan"^-1 sqrt3 - "sec"^-1 (-2)` is equal to ____________.


If a = `(2sin theta)/(1 + costheta + sintheta)`, then `(1 + sintheta - costheta)/(1 + sintheta)` is 


If A = `[(cosx, sinx),(-sinx, cosx)]`, then A1 A–1 is 


The inverse of `f(x) = sqrt(3x^2 - 4x + 5)` is


`lim_(n→∞)tan{sum_(r = 1)^n tan^-1(1/(1 + r + r^2))}` is equal to ______. 


`(tan^-1 (sqrt(3)) - sec^-1(-2))/("cosec"^-1(-sqrt(2)) + cos^-1(-1/2))` is equal to ______.


Find the value of `tan^-1(x/y) + tan^-1((y - x)/(y + x))`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×