Advertisements
Advertisements
प्रश्न
If 2 tan–1(cos θ) = tan–1(2 cosec θ), then show that θ = π 4, where n is any integer.
उत्तर
2 tan–1(cos θ) = tan–1(2 cosec θ)
⇒ `tan^-1 ((2costheta)/(1 - cos^2 theta)) = tan^-1(2 "cosec" theta)` ......`[because 2tan^-1x = tan^-1 (2x)/(1 - x^2)]`
⇒ `(2costheta)/(1 - cos^2theta)` = 2 cosec θ
⇒ `(2costheta)/(sin^2theta) = 2/sintheta`
⇒ cos θ sin θ = sin2θ
⇒ cos θ sin θ – sin2θ = 0
⇒ sin θ(cos θ – sin θ) = 0
⇒ sin θ = 0 or cos θ – sin θ = 0
⇒ sin θ = 0 or 1 – tan θ = 0
⇒ θ = 0 or tan θ = 1
⇒ θ = 0° or θ = `pi/4`
Hence proved.
APPEARS IN
संबंधित प्रश्न
Show that:
`cos^(-1)(4/5)+cos^(-1)(12/13)=cos^(-1)(33/65)`
Find the principal value of `cot^(-1) (sqrt3)`
Find the principal value of `cosec^(-1)(-sqrt2)`
Find the domain of the following function:
`f(x) = sin^-1x + sinx`
Find the domain of the following function:
`f(x)sin^-1sqrt(x^2-1)`
In ΔABC prove that `(b + c - a) tan "A"/(2) = (c + a - b)tan "B"/(2) = (a + b - c)tan "C"/(2)`.
Find the principal value of the following: tan- 1( - √3)
The principal value of sin−1`(1/2)` is ______
Evaluate cot(tan−1(2x) + cot−1(2x))
Prove that `2 tan^-1 (3/4) = tan^-1(24/7)`
Find the principal value of the following:
`sin^-1 (- 1/2)`
Find the principal value of the following:
`sec^-1 (-sqrt2)`
Prove that `tan^-1 (m/n) - tan^-1 ((m - n)/(m + n)) = pi/4`
Find the principal value of `cos^-1 sqrt(3)/2`
Choose the correct alternative:
cos 2θ cos 2ϕ+ sin2 (θ – ϕ) – sin2 (θ + ϕ) is equal to
The value of 2 `cot^-1 1/2 - cot^-1 4/3` is ______
The principal value of `tan^{-1(sqrt3)}` is ______
Solve the following equation `cos(tan^-1x) = sin(cot^-1 3/4)`
`("cos" 8° - "sin" 8°)/("cos" 8° + "sin" 8°)` is equal to ____________.
If tan-1 x – tan-1 y = tan-1 A, then A is equal to ____________.
`sin[π/3 - sin^-1 (-1/2)]` is equal to:
`"cos" ["tan"^-1 {"sin" ("cot"^-1 "x")}]` is equal to ____________.
`"cos"^-1 ("cos" ((7pi)/6))` is equal to ____________.
`"tan"^-1 sqrt3 - "sec"^-1 (-2)` is equal to ____________.
If a = `(2sin theta)/(1 + costheta + sintheta)`, then `(1 + sintheta - costheta)/(1 + sintheta)` is
If A = `[(cosx, sinx),(-sinx, cosx)]`, then A1 A–1 is
The inverse of `f(x) = sqrt(3x^2 - 4x + 5)` is
`lim_(n→∞)tan{sum_(r = 1)^n tan^-1(1/(1 + r + r^2))}` is equal to ______.
`(tan^-1 (sqrt(3)) - sec^-1(-2))/("cosec"^-1(-sqrt(2)) + cos^-1(-1/2))` is equal to ______.
Find the value of `tan^-1(x/y) + tan^-1((y - x)/(y + x))`