Advertisements
Advertisements
प्रश्न
Find the domain of the following function:
`f(x)sin^-1sqrt(x^2-1)`
उत्तर
To the domain of sin-1 y which is [−1, 1]
∴ x2 - 1 ∈ [0, 1] as square root can not be negative
⇒ x2 ∈ [0, 1]
⇒ x ∈ [−√2, −1] ∪ [1, √2]
Hence, the domain is [- √2, -1] ∪ [1, √2]
APPEARS IN
संबंधित प्रश्न
`tan^(-1) sqrt3 - sec^(-1)(-2)` is equal to ______.
Find the principal value of `sin^-1(1/sqrt2)`
If `sin^-1 x + sin^-1 y+sin^-1 z+sin^-1 t=2pi` , then find the value of x2 + y2 + z2 + t2
Evaluate the following:
`cot^-1 1/sqrt3-\text(cosec)^-1(-2)+sec^-1(2/sqrt3)`
Evaluate the following:
`\text(cosec)^-1(-2/sqrt3)+2cot^-1(-1)`
Evaluate the following:
`tan^-1(-1/sqrt3)+cot^-1(1/sqrt3)+tan^-1(sin(-pi/2))`
Find the principal value of the following: cosec- 1(2)
Find the principal value of the following: cos- 1`(-1/2)`
Evaluate the following:
`cos^-1(1/2) + 2sin^-1(1/2)`
Evaluate the following:
`tan^-1 sqrt(3) - sec^-1 (-2)`
Evaluate the following:
`"cosec"^-1(-sqrt(2)) + cot^-1(sqrt(3))`
Find the principal solutions of the following equation:
cot 2θ = 0.
`tan^-1(tan (7pi)/6)` = ______
If `sin(sin^-1(1/5) + cos^-1(x))` = 1, then x = ______
Show that `sin^-1(3/5) + sin^-1(8/17) = cos^-1(36/85)`
Show that `tan^-1 (1/2) + tan^-1 (2/11) = tan^-1 (3/4)`
Show that `sin^-1 (- 3/5) - sin^-1 (- 8/17) = cos^-1 (84/85)`
Find the principal value of `sin^-1 1/sqrt(2)`
In ΔABC, tan`A/2 = 5/6` and tan`C/2 = 2/5`, then ______
If `sin^-1 3/5 + cos^-1 12/13 = sin^-1 P`, then P is equal to ______
The principal value of `tan^{-1(sqrt3)}` is ______
In a triangle ABC, ∠C = 90°, then the value of `tan^-1 ("a"/("b + c")) + tan^-1("b"/("c + a"))` is ______.
The value of `sin^-1(cos (53pi)/5)` is ______
The equation tan–1x – cot–1x = `(1/sqrt(3))` has ______.
Prove that `tan^-1 1/4 + tan^-1 2/9 = sin^-1 1/sqrt(5)`
`"sin" 265° - "cos" 265°` is ____________.
If tan-1 (x – 1) + tan-1 x + tan-1 (x + 1) = tan-1 3x, then the values of x are ____________.
`"sin"^-1 (1 - "x") - 2 "sin"^-1 "x" = pi/2`
If `"x" in (- pi/2, pi/2), "then the value of tan"^-1 ("tan x"/4) + "tan"^-1 ((3 "sin" 2 "x")/(5 + 3 "cos" 2 "x"))` is ____________.
`"tan"^-1 sqrt3 - "sec"^-1 (-2)` is equal to ____________.
The equation of the tangent to the curve given by x = a sin3t, y = bcos3t at a point where t = `pi/2` is
If A = `[(cosx, sinx),(-sinx, cosx)]`, then A1 A–1 is
Domain and Rariges of cos–1 is:-
`sin(tan^-1x), |x| < 1` is equal to
Number of values of x satisfying the system of equations `sin^-1sqrt(2 + e^(-2x) - 2e^-x) + sec^-1sqrt(1 - x^2 + x^4) = π/2` and `5^(1+tan^-1x)` = 4 + [cos–1x] is ______ (where [.] denotes greatest integer function)
Number of values of x which lie in [0, 2π] and satisfy the equation
`(cos x/4 - 2sinx) sinx + (1 + sin x/4 - 2cosx)cosx` = 0
If x ∈ R – {0}, then `tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/(sqrt(1 + x^2) - sqrt(1 - x^2)))`
If cos–1 x > sin–1 x, then ______.