हिंदी

Evaluate the following: cosec-1(-2)+cot-1(3) - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate the following:

cosec-1(-2)+cot-1(3)

योग

उत्तर

Let cosec-1(-2)=α,where -π2yπ2,y0

∴ cosec α = -2=-cosec π4

∴ cosec α = cosec(-π4)   ...[∵ cosec (– θ) = – cosec θ]]

∴ α = -π4          ...[-π2-π4π2]

cosec-1(-2)=-π4                            ...(1)

Let cot-1(3) = β, where 0 < β < π

∴ cot β = 3=cot π6

∴ β = π6          ...[0<π6<π]

cot-1(3)=π6              ...(2)

cosec-1(-2)+cot-1(3)

= -π4+π6              ...[By (1) and (2)]

= -3π+2π12

= -π12.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Trigonometric Functions - Exercise 3.3 [पृष्ठ १०३]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 3 Trigonometric Functions
Exercise 3.3 | Q 2.4 | पृष्ठ १०३

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Show that 2sin-1(35)=tan-1(247)


Show that:

cos-1(45)+cos-1(1213)=cos-1(3365)


Find the principal values of sin-1(-12)


Find the principal value of cosec−1 (2)


Find the principal value of tan-1(-3)


Find the principal value of tan−1 (−1)


Find the principal value of  cos-1(-12)


Find the value of the following:

cos-1(12)+2sin-1(12)


Prove that:

tan-1 (1+x-1-x1+x+1-x)=π4-12cos-1x, for -12x1

[Hint: put x =  cos 2θ]


sin-1 12-2sin-1 12


Find the domain of the following function:

f(x)sin-1x2-1


Find the domain of the following function:

f(x)=sin-1x+sin-12x


If sin-1x+sin-1y+sin-1z+sin-1t=2π , then find the value of x2 + y2 + z2 + t2 


Evaluate the following:

tan-1(-13)+tan-1(-3)+tan-1(sin(-π2))


In ΔABC, if a = 18, b = 24, c = 30 then find the values of sin (A2).


Evaluate the following:

cos-1(12)+2sin-1(12)


Evaluate the following:

tan-13-sec-1(-2)


Prove the following:

tan-1[cosθ + sinθcosθ - sinθ]=π4+θ,ifθ(-π4,π4)


Prove the following:

tan-1[1-cosθ1+cosθ]=θ2, if θ ∈ (– π, π).


sin−1x − cos−1x = π6, then x = ______


Prove that 2tan-1(34)=tan-1(247)


Find the principal value of the following:

tan-1 (-1)


Find the principal value of the following:

cosec-1 (2)


Find the principal value of the following:

sec-1(-2)


Prove that:

2 tan-1 (x) = sin-1(2x1+x2)


Express tan-1(cosx-sinxcosx+sinx), 0 < x < π in the simplest form.


Find the principal value of sec-1(-2)


In Δ ABC, with the usual notations, if sin B sin C = bca2, then the triangle is ______.


Which of the following function has period 2?


tan[2tan-1(13)-π4] = ______.


If 3sin-1(2x1+x2)-4cos-1(1-x21+x2)+2tan-1(2x1-x2)=π3, then x is equal to ______ 


If tan-1x+tan-1y=4π5, then cot-1x+cot-1y equals ______.


The value of sin-1[cos(π3)]+sin-1[tan(5π4)] is ______.


The domain of y = cos–1(x2 – 4) is ______.


Prove that cot(π4-2cot-13) = 7


Show that cos(2tan-1 17)=sin(4tan-1 13)


All trigonometric functions have inverse over their respective domains.


When x=x2, then tan x is ____________.


If x + y=x4 then (1+ tanx)(1 + tany) is equal to ____________.


If sin-1 x – cos-1 x =π6, then x = ____________.


sin-1(-12)


cos-112+2 sin-1 12 is equal to ____________.


The value of cos-1(cos(33π5)) is ____________.


tan(π4+12cos-1x)+tan(π4-12cos-1x)= ____________.


The equation 2cos-1 x + sin-1 x =11π6 has ____________.


If tan-1 x – tan-1 y = tan-1 A, then A is equal to ____________.


cos[tan-1{sin(cot-1x)}] is equal to ____________.


If cot-1(cosα)-tan-1(cosα)=x, then sinx is equal to ____________.


If a = 2sinθ1+cosθ+sinθ, then 1+sinθ-cosθ1+sinθ is 


If A = [cosxsinx-sinxcosx], then A1 A–1 is 


The number of solutions of sin–1x + sin–1(1 – x) = cos–1x is


What will be the principal value of sin-1(-12)?


What is the principal value of cosec–1(2).


Find the principal value of tan-1(3)


tan-1 1-x1+x=12tan-1x,(x>0), x then will be equal to.


2tan-1(cosx)=tan-1(2cosec x), then 'x' will be equal to


What is the values of cos-1(cos 7π6)


If sin(sin-1 15+cos-1x)=1, the what will be the value of x?


Find the principal value of cot-1(-13)


If f'(x) = x–1, then find f(x)


cos–1(cos10) is equal to ______.


If tan–1 2x + tan–1 3x = π4, then x = ______.


The value of cos-1(cos(π2))+cos-1(sin(2π2)) is ______.


Derivative of tan-1(x1-x2) with respect sin–1(3x – 4x3) is ______.


If 2 tan–1 (cosx) = tan–1 (2 cosec x), then sin x + cos x is equal to ______.


sin [cot–1 (cos (tan–1 x))] = ______.


Prove that:

tan–1x + tan–1y = π+tan-1(x+y1-xy), provided x > 0, y > 0, xy > 1


Find the value of tan-1(xy)+tan-1(y-xy+x)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.