Advertisements
Advertisements
प्रश्न
Prove that:
`tan^-1 ((sqrt(1 + x) - sqrt(1 - x))/(sqrt(1 + x) + sqrt(1 - x))) = pi/4 - 1/2 cos^-1 x`, for `- 1/sqrt2 <= x <= 1`
[Hint: put x = cos 2θ]
उत्तर
LHS = `tan^-1 ((sqrt(1 + x) - sqrt(1 - x))/(sqrt(1 + x) + sqrt(1 - x)))`
Put x = cos θ
∴ θ = cos–1x
∴ LHS = `tan^-1 ((sqrt(1 + cos theta) - sqrt(1 - cos theta))/(sqrt(1 + cos theta) + sqrt(1 - cos theta)))`
= `tan^-1 [(sqrt(2 cos^2(theta/2)) - sqrt(2 sin^2 (theta/2)))/(sqrt(2 cos^2 (theta/2)) + sqrt(2 sin^2 (theta/2)))]`
= `tan^-1 [(sqrt(2) cos (theta/2) - sqrt(2) sin (theta/2))/(sqrt(2) cos (theta/2) + sqrt(2) sin (theta/2))]`
= `tan^-1 [((sqrt(2) cos (theta/2))/(sqrt(2) cos (theta/2)) - (sqrt(2) sin (theta/2))/(sqrt(2) cos (theta/2)))/((sqrt(2) cos (theta/2))/(sqrt(2) cos (theta/2)) + (sqrt(2) sin (theta/2))/(sqrt(2) cos (theta/2)))]`
= `tan^-1 [(1 - tan(theta/2))/(1 + tan (theta/2))]`
= `tan^-1 [(tan pi/4 - tan (theta/2))/(1 + tan pi/4. tan (theta/2))]` .....`[∵ tan pi/4 =1]`
= `tan^-1 [tan (pi/4 - theta/2)]`
= `pi/4 - theta/2`
= `pi/4 - 1/2 cos^-1`x .....[∵ θ = cos–1x]
= RHS.
संबंधित प्रश्न
Show that `2sin^-1(3/5) = tan^-1(24/7)`
Find the principal value of cosec−1 (2)
Find the principal value of `tan^(-1) (-sqrt3)`
Find the principal value of `cos^(-1) (-1/2)`
Find the principal value of `sec^(-1) (2/sqrt(3))`
Find the value of the following:
`tan^(-1)(1) + cos^(-1) (-1/2) + sin^(-1) (-1/2)`
Find the value of the following:
If sin−1 x = y, then
Find the value of the following:
`tan^(-1) (tan (7x)/6)`
Find the domain of the following function:
`f(x)=sin^-1x^2`
Find the domain of the following function:
`f(x) = sin^-1x + sinx`
Find the domain of the following function:
`f(x)sin^-1sqrt(x^2-1)`
Find the domain of the following function:
`f(x)=sin^-1x+sin^-1 2x`
If `sin^-1 x + sin^-1 y+sin^-1 z+sin^-1 t=2pi` , then find the value of x2 + y2 + z2 + t2
Find the set of values of `cosec^-1(sqrt3/2)`
Find the domain of `f(x)=cotx+cot^-1x`
Evaluate the following:
`tan^-1(-1/sqrt3)+cot^-1(1/sqrt3)+tan^-1(sin(-pi/2))`
Prove that:
cot−1 7 + cot−1 8 + cot−1 18 = cot−1 3 .
Solve for x:
`tan^-1 [(x-1),(x-2)] + tan^-1 [(x+1),(x+2)] = x/4`
In ΔABC, if a = 18, b = 24, c = 30 then find the values of A(ΔABC)
In ΔABC, if a = 18, b = 24, c = 30 then find the values of sinA
In ΔABC prove that `(b + c - a) tan "A"/(2) = (c + a - b)tan "B"/(2) = (a + b - c)tan "C"/(2)`.
Find the principal value of the following: tan- 1( - √3)
Find the principal value of the following: sin-1 `(1/sqrt(2))`
Prove the following:
`sin^-1(-1/2) + cos^-1(-sqrt(3)/2) = cos^-1(-1/2)`
Prove the following:
`sin^-1(3/5) + cos^-1(12/13) = sin^-1(56/65)`
Prove the following:
`cos^-1(3/5) + cos^-1(4/5) = pi/(2)`
Prove the following:
`2tan^-1(1/3) = tan^-1(3/4)`
In ΔABC, prove the following:
`(cos A)/a + (cos B)/b + (cos C)/c = (a^2 + b^2 + c^2)/(2abc)`
Find the principal solutions of the following equation:
tan 5θ = -1
Find the principal solutions of the following equation:
cot 2θ = 0.
sin−1x − cos−1x = `pi/6`, then x = ______
The principal value of sin−1`(1/2)` is ______
If `sin(sin^-1(1/5) + cos^-1(x))` = 1, then x = ______
Prove that `2 tan^-1 (3/4) = tan^-1(24/7)`
Evaluate `cos[pi/6 + cos^-1 (- sqrt(3)/2)]`
Prove that `2 tan^-1 (1/8) + tan^-1 (1/7) + 2tan^-1 (1/5) = pi/4`
Find the principal value of the following:
cosec-1 (2)
Find the principal value of the following:
`sec^-1 (-sqrt2)`
Prove that:
`tan^-1 (4/3) + tan^-1 (1/7) = pi/4`
Show that `tan^-1 (1/2) + tan^-1 (2/11) = tan^-1 (3/4)`
Solve `tan^-1 2x + tan^-1 3x = pi/4`
Solve: tan-1 (x + 1) + tan-1 (x – 1) = `tan^-1 (4/7)`
Find the principal value of `sin^-1 1/sqrt(2)`
Find the principal value of `cos^-1 sqrt(3)/2`
Find the principal value of `sec^-1 (- sqrt(2))`
`sin^-1x + sin^-1 1/x + cos^-1x + cos^-1 1/x` = ______
In Δ ABC, with the usual notations, if sin B sin C = `"bc"/"a"^2`, then the triangle is ______.
The principal value of `sin^-1 (sin (3pi)/4)` is ______.
If sin `(sin^-1 1/3 + cos^-1 x) = 1`, then the value of x is ______.
`tan[2tan^-1 (1/3) - pi/4]` = ______.
In a triangle ABC, ∠C = 90°, then the value of `tan^-1 ("a"/("b + c")) + tan^-1("b"/("c + a"))` is ______.
If `tan^-1x + tan^-1y = (4pi)/5`, then `cot^-1x + cot^-1y` equals ______.
`(sin^-1(-1/2) + tan^-1(-1/sqrt(3)))/(sec^-1 (-2/sqrt(3)) + cos^-1(1/sqrt(2))` = ______.
The value of `sin^-1(cos (53pi)/5)` is ______
`sin{tan^-1((1 - x^2)/(2x)) + cos^-1((1 - x^2)/(1 + x^2))}` is equal to ______
The value of `cos(pi/4 + x) - cos(pi/4 - x)` is ______.
The value of `sin^-1[cos(pi/3)] + sin^-1[tan((5pi)/4)]` is ______.
Solve for x `tan^-1((1 - x)/(1 + x)) = 1/2 tan^-1x, x > 0`
The domain of the function y = sin–1 (– x2) is ______.
Show that `2tan^-1 (-3) = (-pi)/2 + tan^-1 ((-4)/3)`
If 2 tan–1(cos θ) = tan–1(2 cosec θ), then show that θ = π 4, where n is any integer.
Show that `cos(2tan^-1 1/7) = sin(4tan^-1 1/3)`
All trigonometric functions have inverse over their respective domains.
When `"x" = "x"/2`, then tan x is ____________.
`"sin"^2 25° + "sin"^2 65°` is equal to ____________.
If `"x + y" = "x"/4` then (1+ tanx)(1 + tany) is equal to ____________.
`("cos" 8° - "sin" 8°)/("cos" 8° + "sin" 8°)` is equal to ____________.
If `"sin"^-1("x"^2 - 7"x" + 12) = "n"pi, AA "n" in "I"`, then x = ____________.
If sin-1 x – cos-1 x `= pi/6,` then x = ____________.
`"sin"^-1 (-1/2)`
`"tan"^-1 (sqrt3)`
`"sin"^-1 (1/sqrt2)`
If tan-1 (x – 1) + tan-1 x + tan-1 (x + 1) = tan-1 3x, then the values of x are ____________.
`2 "tan"^-1 ("cos x") = "tan"^-1 (2 "cosec x")`
`"cos"^-1 ["cos" (2 "cot"^-1 (sqrt2 - 1))] =` ____________.
`sin[π/3 - sin^-1 (-1/2)]` is equal to:
If `"sin"^-1("x"^2 - 7"x" + 12) = "n"pi, AA "n" in "I"`, then x = ____________.
The equation of the tangent to the curve given by x = a sin3t, y = bcos3t at a point where t = `pi/2` is
If a = `(2sin theta)/(1 + costheta + sintheta)`, then `(1 + sintheta - costheta)/(1 + sintheta)` is
The number of solutions of sin–1x + sin–1(1 – x) = cos–1x is
The inverse of `f(x) = sqrt(3x^2 - 4x + 5)` is
What is the value of `sin^-1(sin (3pi)/4)`?
what is the value of `cos^-1 (cos (13pi)/6)`
Value of `sin(pi/3 - sin^1 (- 1/2))` is equal to
If `sin(sin^-1 1/5 + cos^-1 x) = 1`, the what will be the value of x?
Assertion (A): The domain of the function sec–12x is `(-∞, - 1/2] ∪ pi/2, ∞)`
Reason (R): sec–1(–2) = `- pi/4`
Consider f(x) = sin–1[2x] + cos–1([x] – 1) (where [.] denotes greatest integer function.) If domain of f(x) is [a, b) and the range of f(x) is {c, d} then `a + b + (2d)/c` is equal to ______. (where c < d)
cos–1(cos10) is equal to ______.
Number of values of x which lie in [0, 2π] and satisfy the equation
`(cos x/4 - 2sinx) sinx + (1 + sin x/4 - 2cosx)cosx` = 0
If tan–1 2x + tan–1 3x = `π/4`, then x = ______.
If 2 tan–1 (cosx) = tan–1 (2 cosec x), then sin x + cos x is equal to ______.
If –1 ≤ x ≤ 1, the prove that sin–1 x + cos–1 x = `π/2`
`sin[π/3 + sin^-1 (1/2)]` is equal to ______.
Prove that:
tan–1x + tan–1y = `π + tan^-1((x + y)/(1 - xy))`, provided x > 0, y > 0, xy > 1
The value of `tan(cos^-1 4/5 + tan^-1 2/3)` is ______.
Find the value of `tan^-1(x/y) + tan^-1((y - x)/(y + x))`