हिंदी

Prove tan-1 (1+x-1-x1+x+1-x)=π4-12cos-1x.-12≤x≤1 [Hint: put x = cos2θ] - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Prove that:

`tan^-1  ((sqrt(1 + x) - sqrt(1 - x))/(sqrt(1 + x) + sqrt(1 - x))) = pi/4 - 1/2 cos^-1 x`, for `- 1/sqrt2 <= x <= 1`

[Hint: put x =  cos 2θ]

योग

उत्तर

LHS = `tan^-1  ((sqrt(1 + x) - sqrt(1 - x))/(sqrt(1 + x) + sqrt(1 - x)))`

Put x = cos θ

∴ θ = cos–1x

∴ LHS = `tan^-1  ((sqrt(1 + cos theta) - sqrt(1 - cos theta))/(sqrt(1 + cos theta) + sqrt(1 - cos theta)))`

= `tan^-1  [(sqrt(2 cos^2(theta/2)) - sqrt(2 sin^2 (theta/2)))/(sqrt(2 cos^2 (theta/2)) + sqrt(2 sin^2 (theta/2)))]`

= `tan^-1  [(sqrt(2) cos (theta/2) - sqrt(2) sin (theta/2))/(sqrt(2) cos (theta/2) + sqrt(2) sin (theta/2))]`

= `tan^-1  [((sqrt(2) cos (theta/2))/(sqrt(2) cos (theta/2)) - (sqrt(2) sin (theta/2))/(sqrt(2) cos (theta/2)))/((sqrt(2) cos (theta/2))/(sqrt(2) cos (theta/2)) + (sqrt(2) sin (theta/2))/(sqrt(2) cos (theta/2)))]`

= `tan^-1 [(1 - tan(theta/2))/(1 + tan (theta/2))]`

= `tan^-1 [(tan  pi/4 - tan (theta/2))/(1 + tan  pi/4. tan (theta/2))]`  .....`[∵ tan  pi/4 =1]`

= `tan^-1 [tan (pi/4 - theta/2)]`

= `pi/4 - theta/2`

= `pi/4 - 1/2 cos^-1`x    .....[∵ θ = cos–1x]

= RHS.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Inverse Trigonometric Functions - Exercise 2.3 [पृष्ठ ५२]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 2 Inverse Trigonometric Functions
Exercise 2.3 | Q 11 | पृष्ठ ५२
बालभारती Mathematics and Statistics 1 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 3 Trigonometric Functions
Miscellaneous exercise 3 | Q 23 | पृष्ठ ११०

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Show that `2sin^-1(3/5) = tan^-1(24/7)`


Find the principal value of cosec−1 (2)


Find the principal value of `tan^(-1) (-sqrt3)`


Find the principal value of  `cos^(-1) (-1/2)`


Find the principal value of  `sec^(-1) (2/sqrt(3))`


Find the value of the following:

`tan^(-1)(1) + cos^(-1) (-1/2) + sin^(-1) (-1/2)`


Find the value of the following:

If sin−1 x = y, then


Find the value of the following:

`tan^(-1) (tan  (7x)/6)`


Find the domain of the following function:

`f(x)=sin^-1x^2`

 


Find the domain of the following function:

`f(x) = sin^-1x + sinx`


Find the domain of the following function:

`f(x)sin^-1sqrt(x^2-1)`


Find the domain of the following function:

`f(x)=sin^-1x+sin^-1 2x`


If `sin^-1 x + sin^-1 y+sin^-1 z+sin^-1 t=2pi` , then find the value of x2 + y2 + z2 + t2 


Find the set of values of `cosec^-1(sqrt3/2)`


Find the domain of `f(x)=cotx+cot^-1x`


Evaluate the following:

`tan^-1(-1/sqrt3)+cot^-1(1/sqrt3)+tan^-1(sin(-pi/2))`


Prove that:
cot−1 7 + cot​−1 8 + cot​−1 18 = cot​−1 3 .


Solve for x:
`tan^-1 [(x-1),(x-2)] + tan^-1 [(x+1),(x+2)] = x/4`


In ΔABC, if a = 18, b = 24, c = 30 then find the values of A(ΔABC)


In ΔABC, if a = 18, b = 24, c = 30 then find the values of sinA


In ΔABC prove that `(b + c - a) tan  "A"/(2) = (c + a - b)tan  "B"/(2) = (a + b - c)tan  "C"/(2)`.


Find the principal value of the following: tan- 1( - √3)


Find the principal value of the following: sin-1 `(1/sqrt(2))`


Prove the following:

`sin^-1(-1/2) + cos^-1(-sqrt(3)/2) = cos^-1(-1/2)`


Prove the following:

`sin^-1(3/5) + cos^-1(12/13) = sin^-1(56/65)`


Prove the following:

`cos^-1(3/5) + cos^-1(4/5) = pi/(2)`


Prove the following: 

`2tan^-1(1/3) = tan^-1(3/4)`


In ΔABC, prove the following:

`(cos A)/a + (cos B)/b + (cos C)/c = (a^2 + b^2 + c^2)/(2abc)`


Find the principal solutions of the following equation:
tan 5θ = -1


Find the principal solutions of the following equation:

cot 2θ = 0.


sin−1x − cos−1x = `pi/6`, then x = ______


The principal value of sin−1`(1/2)` is ______


If `sin(sin^-1(1/5) + cos^-1(x))` = 1, then x = ______


Prove that `2 tan^-1 (3/4) = tan^-1(24/7)`


Evaluate `cos[pi/6 + cos^-1 (- sqrt(3)/2)]`


Prove that `2 tan^-1 (1/8) + tan^-1 (1/7) + 2tan^-1 (1/5) = pi/4`


Find the principal value of the following:

cosec-1 (2)


Find the principal value of the following:

`sec^-1 (-sqrt2)`


Prove that:

`tan^-1 (4/3) + tan^-1 (1/7) = pi/4`


Show that `tan^-1 (1/2) + tan^-1 (2/11) = tan^-1 (3/4)`


Solve `tan^-1 2x + tan^-1 3x = pi/4`


Solve: tan-1 (x + 1) + tan-1 (x – 1) = `tan^-1 (4/7)`


Find the principal value of `sin^-1  1/sqrt(2)`


Find the principal value of `cos^-1  sqrt(3)/2`


Find the principal value of `sec^-1 (- sqrt(2))`


`sin^-1x + sin^-1  1/x + cos^-1x + cos^-1  1/x` = ______


In Δ ABC, with the usual notations, if sin B sin C = `"bc"/"a"^2`, then the triangle is ______.


The principal value of `sin^-1 (sin  (3pi)/4)` is ______.


If sin `(sin^-1  1/3 + cos^-1 x) = 1`, then the value of x is ______.


`tan[2tan^-1 (1/3) - pi/4]` = ______.


In a triangle ABC, ∠C = 90°, then the value of `tan^-1 ("a"/("b + c")) + tan^-1("b"/("c + a"))` is ______.


If `tan^-1x + tan^-1y = (4pi)/5`, then `cot^-1x + cot^-1y` equals ______.


`(sin^-1(-1/2) + tan^-1(-1/sqrt(3)))/(sec^-1 (-2/sqrt(3)) + cos^-1(1/sqrt(2))` = ______.


The value of `sin^-1(cos  (53pi)/5)` is ______ 


`sin{tan^-1((1 - x^2)/(2x)) + cos^-1((1 - x^2)/(1 + x^2))}` is equal to ______ 


The value of `cos(pi/4 + x) - cos(pi/4 - x)` is ______.


The value of `sin^-1[cos(pi/3)] + sin^-1[tan((5pi)/4)]` is ______.


Solve for x `tan^-1((1 - x)/(1 + x)) = 1/2 tan^-1x, x > 0`


The domain of the function y = sin–1 (– x2) is ______.


Show that `2tan^-1 (-3) = (-pi)/2 + tan^-1 ((-4)/3)`


If 2 tan–1(cos θ) = tan–1(2 cosec θ), then show that θ = π 4, where n is any integer.


Show that `cos(2tan^-1  1/7) = sin(4tan^-1  1/3)`


All trigonometric functions have inverse over their respective domains.


When `"x" = "x"/2`, then tan x is ____________.


`"sin"^2 25° +  "sin"^2 65°` is equal to ____________.


If `"x + y" = "x"/4` then (1+ tanx)(1 + tany) is equal to ____________.


`("cos" 8° -  "sin" 8°)/("cos" 8° +  "sin" 8°)`  is equal to ____________.


If `"sin"^-1("x"^2 - 7"x" + 12) = "n"pi, AA "n" in "I"`, then x = ____________.


If sin-1 x – cos-1 x `= pi/6,` then x = ____________.


`"sin"^-1 (-1/2)`


`"tan"^-1 (sqrt3)`


`"sin"^-1 (1/sqrt2)`


If tan-1 (x – 1) + tan-1 x + tan-1 (x + 1) = tan-1 3x, then the values of x are ____________.


`2  "tan"^-1 ("cos x") = "tan"^-1 (2  "cosec x")`


`"cos"^-1 ["cos" (2  "cot"^-1 (sqrt2 - 1))] =` ____________.


`sin[π/3 - sin^-1 (-1/2)]` is equal to:


If `"sin"^-1("x"^2 - 7"x" + 12) = "n"pi, AA  "n" in "I"`, then x = ____________.


The equation of the tangent to the curve given by x = a sin3t, y = bcos3t at a point where t = `pi/2` is


If a = `(2sin theta)/(1 + costheta + sintheta)`, then `(1 + sintheta - costheta)/(1 + sintheta)` is 


The number of solutions of sin–1x + sin–1(1 – x) = cos–1x is


The inverse of `f(x) = sqrt(3x^2 - 4x + 5)` is


What is the value of `sin^-1(sin  (3pi)/4)`?


what is the value of `cos^-1 (cos  (13pi)/6)`


Value of `sin(pi/3 - sin^1 (- 1/2))` is equal to


If `sin(sin^-1  1/5 + cos^-1 x) = 1`, the what will be the value of x?


Assertion (A): The domain of the function sec–12x is `(-∞, - 1/2] ∪ pi/2, ∞)`

Reason (R): sec–1(–2) = `- pi/4`


Consider f(x) = sin–1[2x] + cos–1([x] – 1) (where [.] denotes greatest integer function.) If domain of f(x) is [a, b) and the range of f(x) is {c, d} then `a + b + (2d)/c` is equal to ______. (where c < d) 


cos–1(cos10) is equal to ______.


Number of values of x which lie in [0, 2π] and satisfy the equation

`(cos  x/4 - 2sinx) sinx + (1 + sin  x/4 - 2cosx)cosx` = 0


If tan–1 2x + tan–1 3x = `π/4`, then x = ______.


If 2 tan–1 (cosx) = tan–1 (2 cosec x), then sin x + cos x is equal to ______.


If –1 ≤ x ≤ 1, the prove that sin–1 x + cos–1 x = `π/2`


`sin[π/3 + sin^-1 (1/2)]` is equal to ______.


Prove that:

tan–1x + tan–1y = `π + tan^-1((x + y)/(1 - xy))`, provided x > 0, y > 0, xy > 1


The value of `tan(cos^-1  4/5 + tan^-1  2/3)` is ______.


Find the value of `tan^-1(x/y) + tan^-1((y - x)/(y + x))`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×