Advertisements
Advertisements
प्रश्न
Prove that:
`cot^(-1) ((sqrt(1+sin x) + sqrt(1-sinx))/(sqrt(1+sin x) - sqrt(1- sinx))) = x/2`, `x in (0, pi/4)`
उत्तर
Consider `((sqrt(1+sinx) + sqrt(1-sin x))/(sqrt(1+sinx) - sqrt(1-sinx))) = x/2` `x in (0, pi/4)`
`= ((sqrt(1+sinx)+ sqrt(1-sinx))^2)/((sqrt(1+sin x))^2 - (sqrt(1-sin x))^2)` (by rationalizing)
`= ((1+sinx) + (1-sinx)+2sqrt((1+sinx)(1-sinx)))/(1+sinx - 1 + sinx)`
`=(2(1+sqrt(1-sin^2x)))/(2sin x) `
`= (1+ cosx)/sin x = (2 cos^2 x/2)/(2sin x/2 cos x/2)`
`= cot^-1 x/2`
= `cot = x/2`
∴ L.H.S = `cot^(-1) ((sqrt(1+sin x) + sqrt(1-sinx))/(sqrt(1+sin x) - sqrt(1- sinx)))`
` = cot^(-1) (cot x/2) `
`= x/2 = R.H.S`
APPEARS IN
संबंधित प्रश्न
Write the following function in the simplest form:
`tan^(-1) (sqrt((1-cos x)/(1 + cos x))), x < pi`
Write the following function in the simplest form:
`tan^(-1) ((3a^2 x - x^3)/(a^3 - 3ax^2)), a > 0; (-a)/sqrt3 <= x a/sqrt3`
Find the value of the given expression.
`sin^(-1) (sin (2pi)/3)`
Prove that:
`cos^(-1) 4/5 + cos^(-1) 12/13 = cos^(-1) 33/65`
Solve the following equation for x: `cos (tan^(-1) x) = sin (cot^(-1) 3/4)`
If tan-1 x - cot-1 x = tan-1 `(1/sqrt(3)),`x> 0 then find the value of x and hence find the value of sec-1 `(2/x)`.
Find the value, if it exists. If not, give the reason for non-existence
`sin^-1 [sin 5]`
Find the value of `cot[sin^-1 3/5 + sin^-1 4/5]`
Prove that `sin^-1 3/5 - cos^-1 12/13 = sin^-1 16/65`
If tan–1x + tan–1y + tan–1z = π, show that x + y + z = xyz
Simplify: `tan^-1 x/y - tan^-1 (x - y)/(x + y)`
Find the number of solutions of the equation `tan^-1 (x - 1) + tan^-1x + tan^-1(x + 1) = tan^-1(3x)`
Choose the correct alternative:
`tan^-1 (1/4) + tan^-1 (2/9)` is equal to
Choose the correct alternative:
sin–1(2 cos2x – 1) + cos–1(1 – 2 sin2x) =
Choose the correct alternative:
If `cot^-1(sqrt(sin alpha)) + tan^-1(sqrt(sin alpha))` = u, then cos 2u is equal to
Choose the correct alternative:
If |x| ≤ 1, then `2tan^-1x - sin^-1 (2x)/(1 + x^2)` is equal to
Evaluate tan (tan–1(– 4)).
Evaluate: `tan^-1 sqrt(3) - sec^-1(-2)`.
Prove that `sin^-1 8/17 + sin^-1 3/5 = sin^-1 7/85`
If y = `2 tan^-1x + sin^-1 ((2x)/(1 + x^2))` for all x, then ______ < y < ______.
The value of cos215° - cos230° + cos245° - cos260° + cos275° is ______.
The maximum value of sinx + cosx is ____________.
The minimum value of sinx - cosx is ____________.
Solve for x : `"sin"^-1 2 "x" + sin^-1 3"x" = pi/3`
The value of cot `("cosec"^-1 5/3 + "tan"^-1 2/3)` is ____________.
The value of expression 2 `"sec"^-1 2 + "sin"^-1 (1/2)`
`"tan"^-1 1/3 + "tan"^-1 1/5 + "tan"^-1 1/7 = "tan"^-1 1/8 =` ____________.
Simplest form of `tan^-1 ((sqrt(1 + cos "x") + sqrt(1 - cos "x"))/(sqrt(1 + cos "x") - sqrt(1 - cos "x")))`, `π < "x" < (3π)/2` is:
`"tan"^-1 1/3 + "tan"^-1 1/5 + "tan"^-1 1/7 + "tan"^-1 1/8 =` ____________.
`"cos"^-1["cos"(2"cot"^-1(sqrt2 - 1))]` = ____________.
The value of `"cos"^-1 ("cos" ((33pi)/5))` is ____________.
`"tan"^-1 1 + "cos"^-1 ((-1)/2) + "sin"^-1 ((-1)/2)`
Solve for x : `{"x cos" ("cot"^-1 "x") + "sin" ("cot"^-1 "x")}^2` = `51/50
What is the value of cos (sec–1x + cosec–1x), |x| ≥ 1
The value of `tan^-1 (x/y) - tan^-1 (x - y)/(x + y)` is equal to
Find the value of `sin^-1 [sin((13π)/7)]`