हिंदी

Prove that: cot-1 (1+sinx+1-sinx1+sinx-1-sinx)=x2, x∈(0,π4) - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that:

`cot^(-1)  ((sqrt(1+sin x) + sqrt(1-sinx))/(sqrt(1+sin x) - sqrt(1- sinx))) = x/2`, `x in (0, pi/4)` 

योग

उत्तर

Consider `((sqrt(1+sinx) + sqrt(1-sin x))/(sqrt(1+sinx) - sqrt(1-sinx))) = x/2` `x in (0, pi/4)`

`= ((sqrt(1+sinx)+ sqrt(1-sinx))^2)/((sqrt(1+sin x))^2 - (sqrt(1-sin x))^2)`            (by rationalizing)

`= ((1+sinx) + (1-sinx)+2sqrt((1+sinx)(1-sinx)))/(1+sinx - 1 + sinx)`

`=(2(1+sqrt(1-sin^2x)))/(2sin x) `

`= (1+ cosx)/sin x = (2 cos^2  x/2)/(2sin  x/2 cos  x/2)`

`= cot^-1  x/2`

= `cot = x/2`

∴ L.H.S = `cot^(-1)  ((sqrt(1+sin x) + sqrt(1-sinx))/(sqrt(1+sin x) - sqrt(1- sinx)))`

` = cot^(-1) (cot x/2) `

`= x/2 =  R.H.S`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Inverse Trigonometric Functions - Exercise 2.3 [पृष्ठ ५२]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 2 Inverse Trigonometric Functions
Exercise 2.3 | Q 10 | पृष्ठ ५२

संबंधित प्रश्न

Write the following function in the simplest form:

`tan^(-1) (sqrt((1-cos x)/(1 + cos x))), x < pi`


Write the following function in the simplest form:

`tan^(-1) ((3a^2 x - x^3)/(a^3 - 3ax^2)), a > 0; (-a)/sqrt3 <= x a/sqrt3`


Find the value of the given expression.

`sin^(-1) (sin  (2pi)/3)`


Prove that:

`cos^(-1)  4/5 + cos^(-1)  12/13 = cos^(-1)  33/65`


Solve the following equation for x:  `cos (tan^(-1) x) = sin (cot^(-1)  3/4)`


If tan-1 x - cot-1 x = tan-1 `(1/sqrt(3)),`x> 0 then find the value of x and hence find the value of sec-1 `(2/x)`.


Find the value, if it exists. If not, give the reason for non-existence

`sin^-1 [sin 5]`


Find the value of `cot[sin^-1  3/5 + sin^-1  4/5]`


Prove that `sin^-1  3/5 - cos^-1  12/13 = sin^-1  16/65`


If tan–1x + tan1y + tan1z = π, show that x + y + z = xyz


Simplify: `tan^-1  x/y - tan^-1  (x - y)/(x + y)`


Find the number of solutions of the equation `tan^-1 (x - 1) + tan^-1x + tan^-1(x + 1) = tan^-1(3x)`


Choose the correct alternative:

`tan^-1 (1/4) + tan^-1 (2/9)` is equal to


Choose the correct alternative:

sin–1(2 cos2x – 1) + cos1(1 – 2 sin2x) =


Choose the correct alternative:

If `cot^-1(sqrt(sin alpha)) + tan^-1(sqrt(sin alpha))` = u, then cos 2u is equal to


Choose the correct alternative:

If |x| ≤ 1, then `2tan^-1x - sin^-1  (2x)/(1 + x^2)` is equal to


Evaluate tan (tan–1(– 4)).


Evaluate: `tan^-1 sqrt(3) - sec^-1(-2)`.


Prove that `sin^-1  8/17 + sin^-1  3/5 = sin^-1  7/85`


If y = `2 tan^-1x + sin^-1 ((2x)/(1 + x^2))` for all x, then ______ < y < ______.


The value of cos215° - cos230° + cos245° - cos260° + cos275° is ______.


The maximum value of sinx + cosx is ____________.


The minimum value of sinx - cosx is ____________.


Solve for x : `"sin"^-1  2 "x" + sin^-1  3"x" = pi/3`


The value of cot `("cosec"^-1 5/3 + "tan"^-1 2/3)` is ____________.


The value of expression 2 `"sec"^-1  2 + "sin"^-1 (1/2)`


`"tan"^-1 1/3 + "tan"^-1 1/5 + "tan"^-1 1/7 = "tan"^-1 1/8 =` ____________.


Simplest form of `tan^-1 ((sqrt(1 + cos "x") + sqrt(1 - cos "x"))/(sqrt(1 + cos "x") - sqrt(1 - cos "x")))`, `π < "x" < (3π)/2` is:


`"tan"^-1 1/3 + "tan"^-1 1/5 + "tan"^-1 1/7 + "tan"^-1 1/8 =` ____________.


`"cos"^-1["cos"(2"cot"^-1(sqrt2 - 1))]` = ____________.


The value of `"cos"^-1 ("cos" ((33pi)/5))` is ____________.


`"tan"^-1 1 + "cos"^-1 ((-1)/2) + "sin"^-1 ((-1)/2)`


Solve for x : `{"x cos" ("cot"^-1 "x") + "sin" ("cot"^-1 "x")}^2` = `51/50


What is the value of cos (sec–1x + cosec–1x), |x| ≥ 1


The value of `tan^-1 (x/y) - tan^-1  (x - y)/(x + y)` is equal to


Find the value of `sin^-1 [sin((13π)/7)]`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×