Advertisements
Advertisements
प्रश्न
Find the value of `cot[sin^-1 3/5 + sin^-1 4/5]`
उत्तर
`cot[sin^-1 3/5 + sin^-1 4/5]`
= `cot [sin^-1 (3/5 sqrt(1 - (4/5)^2) + 4/5 sqrt(1 - (3/5)^2))]`
= `cot[sin^-1 (3/5 sqrt(1 - 16/25) + 4/5 sqrt(1 - 9/25))]`
= `cot [sin^-1 (3/5 sqrt(9/25) + 4/5 sqrt(16/25))]`
= `cot [sin^-1 (3/5 xx 3/5 + 4/5 xx 4/5)]`
= `cot[sin^-1 (9/25 + 16/25)]`
= `cot[sin^-1 (25/25)]`
= `cot [sin^-1(1)]`
= `cot pi/2`
= 0
APPEARS IN
संबंधित प्रश्न
If a line makes angles 90°, 60° and θ with x, y and z-axis respectively, where θ is acute, then find θ.
Prove the following:
`3cos^(-1) x = cos^(-1)(4x^3 - 3x), x in [1/2, 1]`
Find the value of `cot(tan^(-1) a + cot^(-1) a)`
Prove that:
`tan^(-1) sqrtx = 1/2 cos^(-1) ((1-x)/(1+x)) , x in [0, 1]`
Solve for x : \[\tan^{- 1} \left( \frac{x - 2}{x - 1} \right) + \tan^{- 1} \left( \frac{x + 2}{x + 1} \right) = \frac{\pi}{4}\] .
Solve for x : \[\cos \left( \tan^{- 1} x \right) = \sin \left( \cot^{- 1} \frac{3}{4} \right)\] .
Find: ∫ sin x · log cos x dx
Find the value, if it exists. If not, give the reason for non-existence
`sin^-1 (cos pi)`
Prove that `tan^-1x + tan^-1y + tan^-1z = tan^-1[(x + y + z - xyz)/(1 - xy - yz - zx)]`
Solve: `cot^-1 x - cot^-1 (x + 2) = pi/12, x > 0`
Choose the correct alternative:
The equation tan–1x – cot–1x = `tan^-1 (1/sqrt(3))` has
Prove that cot–17 + cot–18 + cot–118 = cot–13
`"cos" (2 "tan"^-1 1/7) - "sin" (4 "sin"^-1 1/3) =` ____________.
The value of cot-1 9 + cosec-1 `(sqrt41/4)` is given by ____________.
The value of `"tan"^-1 (3/4) + "tan"^-1 (1/7)` is ____________.
`"tan" (pi/4 + 1/2 "cos"^-1 "x") + "tan" (pi/4 - 1/2 "cos"^-1 "x") =` ____________.
Solve for x : `{"x cos" ("cot"^-1 "x") + "sin" ("cot"^-1 "x")}^2` = `51/50
The Simplest form of `cot^-1 (1/sqrt(x^2 - 1))`, |x| > 1 is
What is the value of cos (sec–1x + cosec–1x), |x| ≥ 1
Solve for x: `sin^-1(x/2) + cos^-1x = π/6`