हिंदी

Prove that: tan-1x=12cos-1(1-x1+x),x∈[0,1] - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that:

`tan^(-1) sqrtx = 1/2 cos^(-1) ((1-x)/(1+x)) , x in [0, 1]`

योग

उत्तर

Let x = `tan^2 theta` Then `sqrtx= tan theta`

=>  `theta = tan^(-1) sqrtx`

`:. (1-x)/(1+x) `

=` (1-tan^2 theta)/(1+tan^2 theta) `

= `cos 2  theta`

Now we have,

R.H.S = `1/2 cos^(-1) ((1-x)/(1+x)) `

`= 1/2 cos^(-1)(cos 2 theta) `

`= 1/2 xx 2theta `

`= theta =  tan^(-1) sqrtx` = L.H.S

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Inverse Trigonometric Functions - Exercise 2.3 [पृष्ठ ५२]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 2 Inverse Trigonometric Functions
Exercise 2.3 | Q 9 | पृष्ठ ५२

संबंधित प्रश्न

 

If `sin (sin^(−1)(1/5)+cos^(−1) x)=1`, then find the value of x.

 

Prove that `cot^(-1)((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx)))=x/2;x in (0,pi/4) `


Prove that: `tan^(-1)(1/2)+tan^(-1)(1/5)+tan^(-1)(1/8)=pi/4`


 

Prove that:

`tan^(-1)""1/5+tan^(-1)""1/7+tan^(-1)""1/3+tan^(-1)""1/8=pi/4`

 

If `tan^-1(2x)+tan^-1(3x)=pi/4`, then find the value of ‘x’.


Prove `tan^(-1)  2/11 + tan^(-1)  7/24 = tan^(-1)  1/2`


`cos^(-1) (cos  (7pi)/6)` is equal to ______.


Prove that:

`cos^(-1)  4/5 + cos^(-1)  12/13 = cos^(-1)  33/65`


Solve the following equation:

`2 tan^(-1) (cos x) =  tan^(-1) (2 cosec x)`


sin (tan–1 x), | x| < 1 is equal to ______.


If y = `(x sin^-1 x)/sqrt(1 -x^2)`, prove that: `(1 - x^2)dy/dx = x + y/x`


Find the value of `sin^-1[cos(sin^-1 (sqrt(3)/2))]`


Find the value of `cot[sin^-1  3/5 + sin^-1  4/5]`


Prove that `tan^-1x + tan^-1  (2x)/(1 - x^2) = tan^-1  (3x - x^3)/(1 - 3x^2), |x| < 1/sqrt(3)`


Solve: `tan^-1x = cos^-1  (1 - "a"^2)/(1 + "a"^2) - cos^-1  (1 - "b"^2)/(1 + "b"^2), "a" > 0, "b" > 0`


Solve: `2tan^-1 (cos x) = tan^-1 (2"cosec"  x)`


Choose the correct alternative:

If `cot^-1(sqrt(sin alpha)) + tan^-1(sqrt(sin alpha))` = u, then cos 2u is equal to


Choose the correct alternative:

If `sin^-1x + cot^-1 (1/2) = pi/2`, then x is equal to


Evaluate: `tan^-1 sqrt(3) - sec^-1(-2)`.


Evaluate `cos[sin^-1  1/4 + sec^-1  4/3]`


If `tan^-1x = pi/10` for some x ∈ R, then the value of cot–1x is ______.


Evaluate `cos[cos^-1 ((-sqrt(3))/2) + pi/6]`


If cos–1x > sin–1x, then ______.


Solve for x : `"sin"^-1  2 "x" + sin^-1  3"x" = pi/3`


The value of sin (2tan-1 (0.75)) is equal to ____________.


`"cos" (2  "tan"^-1 1/7) - "sin" (4  "sin"^-1 1/3) =` ____________.


If x = a sec θ, y = b tan θ, then `("d"^2"y")/("dx"^2)` at θ = `π/6` is:


Simplest form of `tan^-1 ((sqrt(1 + cos "x") + sqrt(1 - cos "x"))/(sqrt(1 + cos "x") - sqrt(1 - cos "x")))`, `π < "x" < (3π)/2` is:


`"tan" (pi/4 + 1/2 "cos"^-1 "x") + "tan" (pi/4 - 1/2 "cos"^-1 "x") =` ____________.


`"tan"^-1 1/3 + "tan"^-1 1/5 + "tan"^-1 1/7 + "tan"^-1 1/8 =` ____________.


`"cos"^-1["cos"(2"cot"^-1(sqrt2 - 1))]` = ____________.


`"sin"^-1 ((-1)/2)`


Solve for x : `{"x cos" ("cot"^-1 "x") + "sin" ("cot"^-1 "x")}^2` = `51/50


What is the simplest form of `tan^-1  sqrt(1 - x^2 - 1)/x, x ≠ 0`


The value of `tan^-1 (x/y) - tan^-1  (x - y)/(x + y)` is equal to


`sin^-1(1 - x) - 2sin^-1 x = pi/2`, tan 'x' is equal to


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×