हिंदी

Prove that cot^−1(√(1+sinx)+√(1−sinx)/√(1+sinx)−√(1−sinx))=x/2; x ∈ (0,π/4) - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that `cot^(-1)((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx)))=x/2;x in (0,pi/4) `

उत्तर

`cot^(-1)((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx)))`

`=cot^(-1)((sqrt(cos^2(x/2)+sin^2(x/2)+2 sin(x/2)cos(x/2))+sqrt(cos^2(x/2)+sin^2(x/2)-2 sin(x/2)cos(x/2)))/(sqrt(cos^2(x/2)+sin^2(x/2)+2 sin(x/2)cos(x/2))-sqrt(cos^2(x/2)+sin^2(x/2)-2 sin(x/2)cos(x/2))))  [∵sin 2x=2 sin x cos x and sin^2 x+cos^2 x=1]`

 

`=cot^(-1)(sqrt((cos(x/2)+sin(x/2))^2+sqrt((cos(x/2)-sin(x/2))^2))/(sqrt((cos(x/2)+sin(x/2))^2)-sqrt((cos(x/2)-sin(x/2))^2)))`

`=cot^(-1) {(|cos(x/2)+sin(x/2)|+|cos(x/2)-sin(x/2)|)/(|cos(x/2)+sin(x/2)|-|cos(x/2)-sin(x/2)|)}`

`=cot^(-1) {((cos(x/2)+sin(x/2))+(cos(x/2)-sin(x/2)))/((cos(x/2)+sin(x/2))-(cos(x/2)-sin(x/2)))}   [∵0<x<pi/4⇒cos(x/2)>sin (x/4)]`

`=cot^(-1)((2cos(x/2))/(2sin(x/2)))`

`=cot^(-1)(cotx/2)`

`=x/2`

`=RHS`

Hence proved

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2013-2014 (March) Delhi Set 1

संबंधित प्रश्न

 

If `sin (sin^(−1)(1/5)+cos^(−1) x)=1`, then find the value of x.

 

Write the function in the simplest form:  `tan^(-1)  ((cos x - sin x)/(cos x + sin x)) `,` 0 < x < pi`


Find the value of following:

`tan  1/2 [sin^(-1)  (2x)/(1+ x^2) + cos^(-1)  (1-y^2)/(1+y^2)], |x| < 1, y> 0  and xy < 1`


if `tan^(-1)  (x-1)/(x - 2) + tan^(-1)  (x + 1)/(x + 2) = pi/4` then find the value of x.


Find the value of the given expression.

`tan(sin^(-1)  3/5 + cot^(-1)  3/2)`


`cos^(-1) (cos  (7pi)/6)` is equal to ______.


Prove `(9pi)/8 - 9/4  sin^(-1)  1/3 = 9/4 sin^(-1)  (2sqrt2)/3`


Solve the following equation for x:  `cos (tan^(-1) x) = sin (cot^(-1)  3/4)`


If tan–1x + tan1y + tan1z = π, show that x + y + z = xyz


Solve: `2tan^-1 (cos x) = tan^-1 (2"cosec"  x)`


Solve: `cot^-1 x - cot^-1 (x + 2) = pi/12, x > 0`


If `tan^-1x = pi/10` for some x ∈ R, then the value of cot–1x is ______.


If α ≤ 2 sin–1x + cos–1x ≤ β, then ______.


Show that `tan(1/2 sin^-1  3/4) = (4 - sqrt(7))/3` and justify why the other value `(4 + sqrt(7))/3` is ignored?


If 3 tan–1x + cot–1x = π, then x equals ______.


If `sin^-1 ((2"a")/(1 + "a"^2)) + cos^-1 ((1 - "a"^2)/(1 + "a"^2)) = tan^-1 ((2x)/(1 - x^2))`. where a, x ∈ ] 0, 1, then the value of x is ______.


If y = `2 tan^-1x + sin^-1 ((2x)/(1 + x^2))` for all x, then ______ < y < ______.


The minimum value of sinx - cosx is ____________.


The value of `"tan"^-1 (1/2) + "tan"^-1 (1/3) + "tan"^-1 (7/8)` is ____________.


`"tan"^-1 1 + "cos"^-1 ((-1)/2) + "sin"^-1 ((-1)/2)`


sin (tan−1 x), where |x| < 1, is equal to:


If `"tan"^-1 2  "x + tan"^-1 3  "x" = pi/4`, then x is ____________.


The value of `"cos"^-1 ("cos" ((33pi)/5))` is ____________.


If `"sin" {"sin"^-1 (1/2) + "cos"^-1 "x"} = 1`, then the value of x is ____________.


Solve for x : `{"x cos" ("cot"^-1 "x") + "sin" ("cot"^-1 "x")}^2` = `51/50


The Government of India is planning to fix a hoarding board at the face of a building on the road of a busy market for awareness on COVID-19 protocol. Ram, Robert and Rahim are the three engineers who are working on this project. “A” is considered to be a person viewing the hoarding board 20 metres away from the building, standing at the edge of a pathway nearby. Ram, Robert and Rahim suggested to the firm to place the hoarding board at three different locations namely C, D and E. “C” is at the height of 10 metres from the ground level. For viewer A, the angle of elevation of “D” is double the angle of elevation of “C” The angle of elevation of “E” is triple the angle of elevation of “C” for the same viewer. Look at the figure given and based on the above information answer the following:

Measure of ∠DAB = ________.


The Simplest form of `cot^-1 (1/sqrt(x^2 - 1))`, |x| > 1 is


Solve for x: `sin^-1(x/2) + cos^-1x = π/6`


Solve:

sin–1(x) + sin–1(1 – x) = cos–1x.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×