Advertisements
Advertisements
प्रश्न
If 3 tan–1x + cot–1x = π, then x equals ______.
विकल्प
0
1
– 1
`1/2`
उत्तर
If 3 tan–1x + cot–1x = π, then x equals 1.
Explanation:
Given that 3 tan–1x + cot–1x = π
⇒ 2 tan–1x + tan–1x + cot–1x = π
⇒ `2 tan^-1x + pi/2` = π ......`[because tan^-1x + cot^-1x = pi/2]`
⇒ `2tan^-1x = pi - pi/2`
⇒ `2tan^-1x = pi/2`
⇒ `2tan^-1x = pi/4`
⇒ `tan^-1x = tan^-1(1)`
⇒ x = 1
APPEARS IN
संबंधित प्रश्न
Prove that `cot^(-1)((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx)))=x/2;x in (0,pi/4) `
Prove that:
`tan^(-1)""1/5+tan^(-1)""1/7+tan^(-1)""1/3+tan^(-1)""1/8=pi/4`
If a line makes angles 90°, 60° and θ with x, y and z-axis respectively, where θ is acute, then find θ.
Write the following function in the simplest form:
`tan^(-1) (sqrt((1-cos x)/(1 + cos x))), x < pi`
if `tan^(-1) (x-1)/(x - 2) + tan^(-1) (x + 1)/(x + 2) = pi/4` then find the value of x.
Prove that:
`sin^(-1) 8/17 + sin^(-1) 3/5 = tan^(-1) 77/36`
If cos-1 x + cos -1 y + cos -1 z = π , prove that x2 + y2 + z2 + 2xyz = 1.
If y = `(x sin^-1 x)/sqrt(1 -x^2)`, prove that: `(1 - x^2)dy/dx = x + y/x`
Solve: `2tan^-1 (cos x) = tan^-1 (2"cosec" x)`
Evaluate `cos[sin^-1 1/4 + sec^-1 4/3]`
Solve the equation `sin^-1 6x + sin^-1 6sqrt(3)x = - pi/2`
Prove that `sin^-1 8/17 + sin^-1 3/5 = sin^-1 7/85`
If a1, a2, a3,...,an is an arithmetic progression with common difference d, then evaluate the following expression.
`tan[tan^-1("d"/(1 + "a"_1 "a"_2)) + tan^-1("d"/(21 + "a"_2 "a"_3)) + tan^-1("d"/(1 + "a"_3 "a"_4)) + ... + tan^-1("d"/(1 + "a"_("n" - 1) "a""n"))]`
If `sin^-1 ((2"a")/(1 + "a"^2)) + cos^-1 ((1 - "a"^2)/(1 + "a"^2)) = tan^-1 ((2x)/(1 - x^2))`. where a, x ∈ ] 0, 1, then the value of x is ______.
The value of the expression `tan (1/2 cos^-1 2/sqrt(5))` is ______.
The number of real solutions of the equation `sqrt(1 + cos 2x) = sqrt(2) cos^-1 (cos x)` in `[pi/2, pi]` is ______.
The value of cos215° - cos230° + cos245° - cos260° + cos275° is ______.
The maximum value of sinx + cosx is ____________.
Solve for x : `"sin"^-1 2 "x" + sin^-1 3"x" = pi/3`
If `"tan"^-1 ("cot" theta) = 2theta, "then" theta` is equal to ____________.
`"cos" (2 "tan"^-1 1/7) - "sin" (4 "sin"^-1 1/3) =` ____________.
If `"tan"^-1 (("x" - 1)/("x" + 2)) + "tan"^-1 (("x" + 1)/("x" + 2)) = pi/4,` then x is equal to ____________.
Simplest form of `tan^-1 ((sqrt(1 + cos "x") + sqrt(1 - cos "x"))/(sqrt(1 + cos "x") - sqrt(1 - cos "x")))`, `π < "x" < (3π)/2` is:
The value of `"tan"^-1 (3/4) + "tan"^-1 (1/7)` is ____________.
`"tan"^-1 1/3 + "tan"^-1 1/5 + "tan"^-1 1/7 + "tan"^-1 1/8 =` ____________.
`"cos"^-1["cos"(2"cot"^-1(sqrt2 - 1))]` = ____________.
`"sin"^-1 ((-1)/2)`
If `"sin"^-1 (1 - "x") - 2 "sin"^-1 ("x") = pi/2,` then x is equal to ____________.
The Simplest form of `cot^-1 (1/sqrt(x^2 - 1))`, |x| > 1 is