Advertisements
Advertisements
प्रश्न
Prove that:
`tan^(-1)""1/5+tan^(-1)""1/7+tan^(-1)""1/3+tan^(-1)""1/8=pi/4`
उत्तर
LHS:
`(tan^(-1)""1/5+tan^(-1)""1/7)+(tan^(-1)""1/3+tan^(-1)""1/8)`
`=tan^(-1)((1/5+1/7)/(1-1/5xx1/7))+tan^(-1)((1/3+1/8)/(1-1/3xx1/8)) [:.tan^(-1)A+tan^(-1)B=tan^(-1)((A+B)/(1-AB))] `
`=tan^(-1)""6/17+tan^(-1)""11/23`
`=tan^(-1)((6/17+11/23)/(1-6/17xx11/23))`
`=tan^(-1)(325/325)`
`=tan^(-1) 1`
`=pi/4`
APPEARS IN
संबंधित प्रश्न
Prove that `2tan^(-1)(1/5)+sec^(-1)((5sqrt2)/7)+2tan^(-1)(1/8)=pi/4`
Write the following function in the simplest form:
`tan^(-1) (sqrt(1+x^2) -1)/x, x != 0`
Write the following function in the simplest form:
`tan^(-1) ((3a^2 x - x^3)/(a^3 - 3ax^2)), a > 0; (-a)/sqrt3 <= x a/sqrt3`
Solve the following equation:
`2 tan^(-1) (cos x) = tan^(-1) (2 cosec x)`
sin (tan–1 x), | x| < 1 is equal to ______.
Find the value of `sin^-1[cos(sin^-1 (sqrt(3)/2))]`
Find the value of `cot[sin^-1 3/5 + sin^-1 4/5]`
If tan–1x + tan–1y + tan–1z = π, show that x + y + z = xyz
Simplify: `tan^-1 x/y - tan^-1 (x - y)/(x + y)`
Choose the correct alternative:
`sin^-1 3/5 - cos^-1 13/13 + sec^-1 5/3 - "cosec"^-1 13/12` is equal to
Choose the correct alternative:
`tan^-1 (1/4) + tan^-1 (2/9)` is equal to
Choose the correct alternative:
The equation tan–1x – cot–1x = `tan^-1 (1/sqrt(3))` has
Prove that `2sin^-1 3/5 - tan^-1 17/31 = pi/4`
Evaluate `cos[cos^-1 ((-sqrt(3))/2) + pi/6]`
If `"sec" theta = "x" + 1/(4 "x"), "x" in "R, x" ne 0,`then the value of `"sec" theta + "tan" theta` is ____________.
The value of cot `("cosec"^-1 5/3 + "tan"^-1 2/3)` is ____________.
The value of the expression tan `(1/2 "cos"^-1 2/sqrt3)`
`"cos" (2 "tan"^-1 1/7) - "sin" (4 "sin"^-1 1/3) =` ____________.
The value of cot-1 9 + cosec-1 `(sqrt41/4)` is given by ____________.
Simplest form of `tan^-1 ((sqrt(1 + cos "x") + sqrt(1 - cos "x"))/(sqrt(1 + cos "x") - sqrt(1 - cos "x")))`, `π < "x" < (3π)/2` is:
If `"tan"^-1 2 "x + tan"^-1 3 "x" = pi/4`, then x is ____________.
`"sin"^-1 (1/sqrt2)`
`"tan"^-1 (sqrt3)`
`"sin"^-1 ((-1)/2)`
If `3 "sin"^-1 ((2"x")/(1 + "x"^2)) - 4 "cos"^-1 ((1 - "x"^2)/(1 + "x"^2)) + 2 "tan"^-1 ((2"x")/(1 - "x"^2)) = pi/3` then x is equal to ____________.
Solve for x : `{"x cos" ("cot"^-1 "x") + "sin" ("cot"^-1 "x")}^2` = `51/50
`sin^-1(1 - x) - 2sin^-1 x = pi/2`, tan 'x' is equal to
`50tan(3tan^-1(1/2) + 2cos^-1(1/sqrt(5))) + 4sqrt(2) tan(1/2tan^-1(2sqrt(2)))` is equal to ______.
If `tan^-1 ((x - 1)/(x + 1)) + tan^-1 ((2x - 1)/(2x + 1)) = tan^-1 (23/36)` = then prove that 24x2 – 23x – 12 = 0
Solve for x: `sin^-1(x/2) + cos^-1x = π/6`