Advertisements
Advertisements
Question
Prove that:
`tan^(-1)""1/5+tan^(-1)""1/7+tan^(-1)""1/3+tan^(-1)""1/8=pi/4`
Solution
LHS:
`(tan^(-1)""1/5+tan^(-1)""1/7)+(tan^(-1)""1/3+tan^(-1)""1/8)`
`=tan^(-1)((1/5+1/7)/(1-1/5xx1/7))+tan^(-1)((1/3+1/8)/(1-1/3xx1/8)) [:.tan^(-1)A+tan^(-1)B=tan^(-1)((A+B)/(1-AB))] `
`=tan^(-1)""6/17+tan^(-1)""11/23`
`=tan^(-1)((6/17+11/23)/(1-6/17xx11/23))`
`=tan^(-1)(325/325)`
`=tan^(-1) 1`
`=pi/4`
APPEARS IN
RELATED QUESTIONS
Prove that `2tan^(-1)(1/5)+sec^(-1)((5sqrt2)/7)+2tan^(-1)(1/8)=pi/4`
Find the value of the given expression.
`sin^(-1) (sin (2pi)/3)`
Find the value of the given expression.
`tan^(-1) (tan (3pi)/4)`
Prove that:
`cos^(-1) 12/13 + sin^(-1) 3/5 = sin^(-1) 56/65`
Prove that:
`tan^(-1) sqrtx = 1/2 cos^(-1) ((1-x)/(1+x)) , x in [0, 1]`
sin (tan–1 x), | x| < 1 is equal to ______.
Solve the following equation for x: `cos (tan^(-1) x) = sin (cot^(-1) 3/4)`
Prove that `3sin^(-1)x = sin^(-1) (3x - 4x^3)`, `x in [-1/2, 1/2]`
Solve for x : \[\tan^{- 1} \left( \frac{x - 2}{x - 1} \right) + \tan^{- 1} \left( \frac{x + 2}{x + 1} \right) = \frac{\pi}{4}\] .
Solve for x : `tan^-1 ((2-"x")/(2+"x")) = (1)/(2)tan^-1 ("x")/(2), "x">0.`
Find the value, if it exists. If not, give the reason for non-existence
`tan^-1(sin(- (5pi)/2))`
Find the value of the expression in terms of x, with the help of a reference triangle
sin (cos–1(1 – x))
Find the value of `cot[sin^-1 3/5 + sin^-1 4/5]`
Prove that `tan^-1x + tan^-1 (2x)/(1 - x^2) = tan^-1 (3x - x^3)/(1 - 3x^2), |x| < 1/sqrt(3)`
Solve: `sin^-1 5/x + sin^-1 12/x = pi/2`
Solve: `cot^-1 x - cot^-1 (x + 2) = pi/12, x > 0`
Find the number of solutions of the equation `tan^-1 (x - 1) + tan^-1x + tan^-1(x + 1) = tan^-1(3x)`
Choose the correct alternative:
`sin^-1 (tan pi/4) - sin^-1 (sqrt(3/x)) = pi/6`. Then x is a root of the equation
Choose the correct alternative:
If `cot^-1(sqrt(sin alpha)) + tan^-1(sqrt(sin alpha))` = u, then cos 2u is equal to
Choose the correct alternative:
The equation tan–1x – cot–1x = `tan^-1 (1/sqrt(3))` has
Evaluate tan (tan–1(– 4)).
Evaluate: `tan^-1 sqrt(3) - sec^-1(-2)`.
Evaluate `cos[sin^-1 1/4 + sec^-1 4/3]`
Prove that cot–17 + cot–18 + cot–118 = cot–13
Prove that `tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/((1 + x^2) - sqrt(1 - x^2))) = pi/2 + 1/2 cos^-1x^2`
The maximum value of sinx + cosx is ____________.
If `"cot"^-1 (sqrt"cos" alpha) - "tan"^-1 (sqrt"cos" alpha) = "x",` the sinx is equal to ____________.
If x = a sec θ, y = b tan θ, then `("d"^2"y")/("dx"^2)` at θ = `π/6` is:
`"cos"^-1 (1/2)`
Solve for x : `{"x cos" ("cot"^-1 "x") + "sin" ("cot"^-1 "x")}^2` = `51/50