English

Prove that: tan^−1 1/5+tan^−1 1/7+tan^−1 1/3+tan^−1 1/8=π/4 - Mathematics

Advertisements
Advertisements

Question

 

Prove that:

`tan^(-1)""1/5+tan^(-1)""1/7+tan^(-1)""1/3+tan^(-1)""1/8=pi/4`

 

Solution

 

LHS:

 `(tan^(-1)""1/5+tan^(-1)""1/7)+(tan^(-1)""1/3+tan^(-1)""1/8)`

`=tan^(-1)((1/5+1/7)/(1-1/5xx1/7))+tan^(-1)((1/3+1/8)/(1-1/3xx1/8)) [:.tan^(-1)A+tan^(-1)B=tan^(-1)((A+B)/(1-AB))] `          

`=tan^(-1)""6/17+tan^(-1)""11/23`

`=tan^(-1)((6/17+11/23)/(1-6/17xx11/23))`

`=tan^(-1)(325/325)`

`=tan^(-1) 1`

`=pi/4`

 
shaalaa.com
  Is there an error in this question or solution?
2015-2016 (March) Delhi Set 1

RELATED QUESTIONS

Prove that `2tan^(-1)(1/5)+sec^(-1)((5sqrt2)/7)+2tan^(-1)(1/8)=pi/4`


Find the value of the given expression.

`sin^(-1) (sin  (2pi)/3)`


Find the value of the given expression.

`tan^(-1) (tan  (3pi)/4)`


Prove that:

`cos^(-1)  12/13 + sin^(-1)  3/5 = sin^(-1)  56/65`


Prove that:

`tan^(-1) sqrtx = 1/2 cos^(-1) ((1-x)/(1+x)) , x in [0, 1]`


sin (tan–1 x), | x| < 1 is equal to ______.


Solve the following equation for x:  `cos (tan^(-1) x) = sin (cot^(-1)  3/4)`


Prove that `3sin^(-1)x = sin^(-1) (3x - 4x^3)`, `x in [-1/2, 1/2]`


Solve for x : \[\tan^{- 1} \left( \frac{x - 2}{x - 1} \right) + \tan^{- 1} \left( \frac{x + 2}{x + 1} \right) = \frac{\pi}{4}\] .


Solve for x : `tan^-1 ((2-"x")/(2+"x")) = (1)/(2)tan^-1  ("x")/(2), "x">0.`


Find the value, if it exists. If not, give the reason for non-existence

`tan^-1(sin(- (5pi)/2))`


Find the value of the expression in terms of x, with the help of a reference triangle

sin (cos–1(1 – x))


Find the value of `cot[sin^-1  3/5 + sin^-1  4/5]`


Prove that `tan^-1x + tan^-1  (2x)/(1 - x^2) = tan^-1  (3x - x^3)/(1 - 3x^2), |x| < 1/sqrt(3)`


Solve: `sin^-1  5/x + sin^-1  12/x = pi/2`


Solve: `cot^-1 x - cot^-1 (x + 2) = pi/12, x > 0`


Find the number of solutions of the equation `tan^-1 (x - 1) + tan^-1x + tan^-1(x + 1) = tan^-1(3x)`


Choose the correct alternative:

`sin^-1 (tan  pi/4) - sin^-1 (sqrt(3/x)) = pi/6`. Then x is a root of the equation


Choose the correct alternative:

If `cot^-1(sqrt(sin alpha)) + tan^-1(sqrt(sin alpha))` = u, then cos 2u is equal to


Choose the correct alternative:

The equation tan–1x – cot1x = `tan^-1 (1/sqrt(3))` has


Evaluate tan (tan–1(– 4)).


Evaluate: `tan^-1 sqrt(3) - sec^-1(-2)`.


Evaluate `cos[sin^-1  1/4 + sec^-1  4/3]`


Prove that cot–17 + cot–18 + cot–118 = cot–13


Prove that `tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/((1 + x^2) - sqrt(1 - x^2))) = pi/2 + 1/2 cos^-1x^2`


The maximum value of sinx + cosx is ____________.


If `"cot"^-1 (sqrt"cos" alpha) - "tan"^-1 (sqrt"cos" alpha) = "x",` the sinx is equal to ____________.


If x = a sec θ, y = b tan θ, then `("d"^2"y")/("dx"^2)` at θ = `π/6` is:


`"cos"^-1 (1/2)`


Solve for x : `{"x cos" ("cot"^-1 "x") + "sin" ("cot"^-1 "x")}^2` = `51/50


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×