English

Sin (tan–1 x), | x| < 1 is equal to ______. - Mathematics

Advertisements
Advertisements

Question

sin (tan–1 x), | x| < 1 is equal to ______.

Options

  • `x/(sqrt(1-x^2))`

  • `1/sqrt(1-x^2)`

  • `1/sqrt(1+x^2)`

  • `x/(sqrt(1+ x^2))`

MCQ
Fill in the Blanks

Solution

sin (tan–1 x), | x| < 1 is equal to `underline (x/(sqrt(1+ x^2)))`.

Explanation:

Let tan-1 x = θ 

= x = tan θ, where θ  ∈ `(- pi/2, pi/2)`

∴ `sin (tan^-1x) = sin theta`

Now,

`= sin theta = 1/(cosectheta) = 1/sqrt(1+cot^2theta)`

= `1/sqrt(1+ 1/tan^2theta)`

= `x/(sqrt(x^2 + 1)`

shaalaa.com
  Is there an error in this question or solution?
Chapter 2: Inverse Trigonometric Functions - Exercise 2.3 [Page 52]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 2 Inverse Trigonometric Functions
Exercise 2.3 | Q 15 | Page 52

RELATED QUESTIONS

Prove that `2tan^(-1)(1/5)+sec^(-1)((5sqrt2)/7)+2tan^(-1)(1/8)=pi/4`


Prove `2 tan^(-1)  1/2 + tan^(-1)  1/7 = tan^(-1)  31/17`


Write the following function in the simplest form:

`tan^(-1) (sqrt((1-cos x)/(1 + cos x))), x < pi`


Prove `(9pi)/8 - 9/4  sin^(-1)  1/3 = 9/4 sin^(-1)  (2sqrt2)/3`


sin–1 (1 – x) – 2 sin–1 x = `pi/2` then x is equal to ______.


If cos-1 x + cos -1 y + cos -1 z = π , prove that x2 + y2 + z2 + 2xyz = 1.


Find the value of  `tan(sin^-1  3/5 + cot^-1  3/2)`


Prove that `tan^-1  2/11 + tan^-1  7/24 = tan^-1  1/2`


Prove that `sin^-1  3/5 - cos^-1  12/13 = sin^-1  16/65`


Simplify: `tan^-1  x/y - tan^-1  (x - y)/(x + y)`


Solve: `tan^-1x = cos^-1  (1 - "a"^2)/(1 + "a"^2) - cos^-1  (1 - "b"^2)/(1 + "b"^2), "a" > 0, "b" > 0`


Choose the correct alternative:

If `cot^-1(sqrt(sin alpha)) + tan^-1(sqrt(sin alpha))` = u, then cos 2u is equal to


Choose the correct alternative:

The equation tan–1x – cot1x = `tan^-1 (1/sqrt(3))` has


Prove that cot–17 + cot–18 + cot–118 = cot–13


Solve the equation `sin^-1 6x + sin^-1 6sqrt(3)x = - pi/2`


Show that `2tan^-1 {tan  alpha/2 * tan(pi/4 - beta/2)} = tan^-1  (sin alpha cos beta)/(cosalpha + sinbeta)`


If α ≤ 2 sin–1x + cos–1x ≤ β, then ______.


If 3 tan–1x + cot–1x = π, then x equals ______.


If cos–1x > sin–1x, then ______.


If y = `2 tan^-1x + sin^-1 ((2x)/(1 + x^2))` for all x, then ______ < y < ______.


The value of cot–1(–x) for all x ∈ R in terms of cot–1x is ______.


The value of `"tan"^ -1 (3/4) + "tan"^-1 (1/7)` is ____________.


`"sin" {2  "cos"^-1 ((-3)/5)}` is equal to ____________.


The value of sin (2tan-1 (0.75)) is equal to ____________.


The value of the expression tan `(1/2  "cos"^-1 2/sqrt3)`


`"cot" ("cosec"^-1  5/3 + "tan"^-1  2/3) =` ____________.


sin (tan−1 x), where |x| < 1, is equal to:


If `"tan"^-1 2  "x + tan"^-1 3  "x" = pi/4`, then x is ____________.


The value of `"cos"^-1 ("cos" ((33pi)/5))` is ____________.


If `"sin"^-1 (1 - "x") - 2  "sin"^-1 ("x") = pi/2,` then x is equal to ____________.


The Government of India is planning to fix a hoarding board at the face of a building on the road of a busy market for awareness on COVID-19 protocol. Ram, Robert and Rahim are the three engineers who are working on this project. “A” is considered to be a person viewing the hoarding board 20 metres away from the building, standing at the edge of a pathway nearby. Ram, Robert and Rahim suggested to the firm to place the hoarding board at three different locations namely C, D and E. “C” is at the height of 10 metres from the ground level. For viewer A, the angle of elevation of “D” is double the angle of elevation of “C” The angle of elevation of “E” is triple the angle of elevation of “C” for the same viewer. Look at the figure given and based on the above information answer the following:

Domain and Range of tan-1 x = ________.


The Simplest form of `cot^-1 (1/sqrt(x^2 - 1))`, |x| > 1 is


Find the value of `sin^-1 [sin((13π)/7)]`


The set of all values of k for which (tan–1 x)3 + (cot–1 x)3 = kπ3, x ∈ R, is the internal ______.


Write the following function in the simplest form:

`tan^-1 ((cos x - sin x)/(cos x + sin x)), (-pi)/4 < x < (3 pi)/4`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×