Advertisements
Advertisements
Question
Prove that cot–17 + cot–18 + cot–118 = cot–13
Solution
We have cot–17 + cot–18 + cot–118
= `tan^-1 1/7 + tan^-1 1/8 + tan^-1 1/18` ......(since `cos^-1x = tan^-1 1/x`, if x > 0)
= `tan^-1 ((1/7 + 1/8)/(1 - 1/7 xx 1/8)) + tan^-1 1/18` ......(since x . y = `1/7 1/8 < 1`)
= `tan^-1 3/11 + tan^-1 1/18`
= `tan^-1((3/11 + 1/18)/(1 - 3/11 xx 1/18))` .....(since xy < 1)
= `tan^-1 65/195`
= `tan^-1 1/3`
= cot–13
APPEARS IN
RELATED QUESTIONS
Prove that `2tan^(-1)(1/5)+sec^(-1)((5sqrt2)/7)+2tan^(-1)(1/8)=pi/4`
Find the value of following:
`tan 1/2 [sin^(-1) (2x)/(1+ x^2) + cos^(-1) (1-y^2)/(1+y^2)], |x| < 1, y> 0 and xy < 1`
Find the value of the given expression.
`tan^(-1) (tan (3pi)/4)`
Prove that:
`tan^(-1) sqrtx = 1/2 cos^(-1) ((1-x)/(1+x)) , x in [0, 1]`
Prove that:
`cot^(-1) ((sqrt(1+sin x) + sqrt(1-sinx))/(sqrt(1+sin x) - sqrt(1- sinx))) = x/2`, `x in (0, pi/4)`
Solve for x : \[\tan^{- 1} \left( \frac{x - 2}{x - 1} \right) + \tan^{- 1} \left( \frac{x + 2}{x + 1} \right) = \frac{\pi}{4}\] .
Prove that
\[2 \tan^{- 1} \left( \frac{1}{5} \right) + \sec^{- 1} \left( \frac{5\sqrt{2}}{7} \right) + 2 \tan^{- 1} \left( \frac{1}{8} \right) = \frac{\pi}{4}\] .
Find the value, if it exists. If not, give the reason for non-existence
`sin^-1 (cos pi)`
Solve: `tan^-1x = cos^-1 (1 - "a"^2)/(1 + "a"^2) - cos^-1 (1 - "b"^2)/(1 + "b"^2), "a" > 0, "b" > 0`
Choose the correct alternative:
If `sin^-1x + sin^-1y = (2pi)/3` ; then `cos^-1x + cos^-1y` is equal to
Choose the correct alternative:
`sin^-1 3/5 - cos^-1 13/13 + sec^-1 5/3 - "cosec"^-1 13/12` is equal to
Prove that `2sin^-1 3/5 - tan^-1 17/31 = pi/4`
If `tan^-1x = pi/10` for some x ∈ R, then the value of cot–1x is ______.
If a1, a2, a3,...,an is an arithmetic progression with common difference d, then evaluate the following expression.
`tan[tan^-1("d"/(1 + "a"_1 "a"_2)) + tan^-1("d"/(21 + "a"_2 "a"_3)) + tan^-1("d"/(1 + "a"_3 "a"_4)) + ... + tan^-1("d"/(1 + "a"_("n" - 1) "a""n"))]`
The value of cos215° - cos230° + cos245° - cos260° + cos275° is ______.
The value of `"tan"^-1 (1/2) + "tan"^-1 (1/3) + "tan"^-1 (7/8)` is ____________.
Solve for x : `"sin"^-1 2 "x" + sin^-1 3"x" = pi/3`
The value of `"tan"^ -1 (3/4) + "tan"^-1 (1/7)` is ____________.
`"cot" (pi/4 - 2 "cot"^-1 3) =` ____________.
If `"cot"^-1 (sqrt"cos" alpha) - "tan"^-1 (sqrt"cos" alpha) = "x",` the sinx is equal to ____________.
`"cot" ("cosec"^-1 5/3 + "tan"^-1 2/3) =` ____________.
`"tan"^-1 1/3 + "tan"^-1 1/5 + "tan"^-1 1/7 = "tan"^-1 1/8 =` ____________.
If x = a sec θ, y = b tan θ, then `("d"^2"y")/("dx"^2)` at θ = `π/6` is:
`"cos" (2 "tan"^-1 1/7) - "sin" (4 "sin"^-1 1/3) =` ____________.
`"cos"^-1 1/2 + 2 "sin"^-1 1/2` is equal to ____________.
`"sin"^-1 (1/sqrt2)`
If `"sin" {"sin"^-1 (1/2) + "cos"^-1 "x"} = 1`, then the value of x is ____________.
What is the value of cos (sec–1x + cosec–1x), |x| ≥ 1
If `tan^-1 ((x - 1)/(x + 1)) + tan^-1 ((2x - 1)/(2x + 1)) = tan^-1 (23/36)` = then prove that 24x2 – 23x – 12 = 0