Advertisements
Advertisements
Question
If `tan^-1x = pi/10` for some x ∈ R, then the value of cot–1x is ______.
Options
`pi/5`
`(2pi)/5`
`(3pi)/5`
`(4pi)/5`
Solution
If `tan^-1x = pi/10` for some x ∈ R, then the value of cot–1x is `(2pi)/5`.
Explanation:
We know tan–1x + cot–1x = `pi/2`.
Therefore cot–1x = `pi/2 - pi/10`
⇒ cot–1x = `pi/2 - pi/10 = (2pi)/5`.
APPEARS IN
RELATED QUESTIONS
Prove that: `tan^(-1)(1/2)+tan^(-1)(1/5)+tan^(-1)(1/8)=pi/4`
Prove that `tan^(-1)((6x-8x^3)/(1-12x^2))-tan^(-1)((4x)/(1-4x^2))=tan^(-1)2x;|2x|<1/sqrt3`
Write the following function in the simplest form:
`tan^(-1) (sqrt(1+x^2) -1)/x, x != 0`
Write the function in the simplest form: `tan^(-1) ((cos x - sin x)/(cos x + sin x)) `,` 0 < x < pi`
Write the following function in the simplest form:
`tan^(-1) ((3a^2 x - x^3)/(a^3 - 3ax^2)), a > 0; (-a)/sqrt3 <= x a/sqrt3`
Find the value of the following:
`tan^-1 [2 cos (2 sin^-1 1/2)]`
if `tan^(-1) (x-1)/(x - 2) + tan^(-1) (x + 1)/(x + 2) = pi/4` then find the value of x.
Prove `tan^(-1) 1/5 + tan^(-1) (1/7) + tan^(-1) 1/3 + tan^(-1) 1/8 = pi/4`
Prove that:
`tan^(-1) sqrtx = 1/2 cos^(-1) ((1-x)/(1+x)) , x in [0, 1]`
Solve `tan^(-1) - tan^(-1) (x - y)/(x+y)` is equal to
(A) `pi/2`
(B). `pi/3`
(C) `pi/4`
(D) `(-3pi)/4`
Solve the following equation for x: `cos (tan^(-1) x) = sin (cot^(-1) 3/4)`
Solve: tan-1 4 x + tan-1 6x `= π/(4)`.
Find the value, if it exists. If not, give the reason for non-existence
`sin^-1 (cos pi)`
Find the value, if it exists. If not, give the reason for non-existence
`tan^-1(sin(- (5pi)/2))`
Find the value of `tan(sin^-1 3/5 + cot^-1 3/2)`
Simplify: `tan^-1 x/y - tan^-1 (x - y)/(x + y)`
Solve: `sin^-1 5/x + sin^-1 12/x = pi/2`
Choose the correct alternative:
If `cot^-1(sqrt(sin alpha)) + tan^-1(sqrt(sin alpha))` = u, then cos 2u is equal to
Show that `tan(1/2 sin^-1 3/4) = (4 - sqrt(7))/3` and justify why the other value `(4 + sqrt(7))/3` is ignored?
If 3 tan–1x + cot–1x = π, then x equals ______.
The value of cot–1(–x) for all x ∈ R in terms of cot–1x is ______.
The minimum value of sinx - cosx is ____________.
If `"sec" theta = "x" + 1/(4 "x"), "x" in "R, x" ne 0,`then the value of `"sec" theta + "tan" theta` is ____________.
The domain of the function defind by f(x) `= "sin"^-1 sqrt("x" - 1)` is ____________.
Solve for x : `"sin"^-1 2"x" + "sin"^-1 3"x" = pi/3`
If `"sin" {"sin"^-1 (1/2) + "cos"^-1 "x"} = 1`, then the value of x is ____________.
`tan(2tan^-1 1/5 + sec^-1 sqrt(5)/2 + 2tan^-1 1/8)` is equal to ______.
If `tan^-1 ((x - 1)/(x + 1)) + tan^-1 ((2x - 1)/(2x + 1)) = tan^-1 (23/36)` = then prove that 24x2 – 23x – 12 = 0
Write the following function in the simplest form:
`tan^-1 ((cos x - sin x)/(cos x + sin x)), (-pi)/4 < x < (3 pi)/4`
The value of cosec `[sin^-1((-1)/2)] - sec[cos^-1((-1)/2)]` is equal to ______.