Advertisements
Advertisements
Question
Show that `tan(1/2 sin^-1 3/4) = (4 - sqrt(7))/3` and justify why the other value `(4 + sqrt(7))/3` is ignored?
Solution
We have `tan(1/2 sin^-1 3/4)`
Let `1/2 sin^-1 3/4` = θ
⇒ `sin^-1 3/4` = 2θ
⇒ sin 2θ = `3/4`
⇒ `(2 tan theta)/(1 + tan^2theta) = 3/4`
⇒ `3 tan theta^2 - 8` and θ ++ 3 = 0
⇒ tan θ = `(8 +- sqrt(64 - 36))/6`
⇒ tan θ = `(8 +- sqrt(28))/6 = (8 +- sqrt(7))/6 = (4 + sqrt(7))/3`
Now `- pi/2 ≤ sin^-1 3/4 ≤ pi/2`
⇒ `(-pi)/2 ≤ 1/2 sin^-1 3/4 ≤ pi/2`
∴ `tan((-pi)/2) ≤ tan(1/2(sin^-1 3/4)) ≤ tan pi/4`
⇒ `-1 ≤ tan (1/2 sin^-1 3/4) ≤ 1`
⇒ tan θ = `(4 - sqrt(7))/3` ....`(tan theta = (4 + sqrt(7))/3 > 1, "which is not possible")`
APPEARS IN
RELATED QUESTIONS
Write the following function in the simplest form:
`tan^(-1) (sqrt(1+x^2) -1)/x, x != 0`
Find the value of the given expression.
`tan^(-1) (tan (3pi)/4)`
Prove `(9pi)/8 - 9/4 sin^(-1) 1/3 = 9/4 sin^(-1) (2sqrt2)/3`
Solve for x : \[\cos \left( \tan^{- 1} x \right) = \sin \left( \cot^{- 1} \frac{3}{4} \right)\] .
If cos-1 x + cos -1 y + cos -1 z = π , prove that x2 + y2 + z2 + 2xyz = 1.
Solve: tan-1 4 x + tan-1 6x `= π/(4)`.
Solve for x : `tan^-1 ((2-"x")/(2+"x")) = (1)/(2)tan^-1 ("x")/(2), "x">0.`
Find the value of the expression in terms of x, with the help of a reference triangle
cos (tan–1 (3x – 1))
If tan–1x + tan–1y + tan–1z = π, show that x + y + z = xyz
Prove that `tan^-1x + tan^-1 (2x)/(1 - x^2) = tan^-1 (3x - x^3)/(1 - 3x^2), |x| < 1/sqrt(3)`
Solve: `tan^-1x = cos^-1 (1 - "a"^2)/(1 + "a"^2) - cos^-1 (1 - "b"^2)/(1 + "b"^2), "a" > 0, "b" > 0`
Choose the correct alternative:
If |x| ≤ 1, then `2tan^-1x - sin^-1 (2x)/(1 + x^2)` is equal to
Prove that `tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/((1 + x^2) - sqrt(1 - x^2))) = pi/2 + 1/2 cos^-1x^2`
If `sin^-1 ((2"a")/(1 + "a"^2)) + cos^-1 ((1 - "a"^2)/(1 + "a"^2)) = tan^-1 ((2x)/(1 - x^2))`. where a, x ∈ ] 0, 1, then the value of x is ______.
If |x| ≤ 1, then `2 tan^-1x + sin^-1 ((2x)/(1 + x^2))` is equal to ______.
If cos–1α + cos–1β + cos–1γ = 3π, then α(β + γ) + β(γ + α) + γ(α + β) equals ______.
If y = `2 tan^-1x + sin^-1 ((2x)/(1 + x^2))` for all x, then ______ < y < ______.
The value of cos215° - cos230° + cos245° - cos260° + cos275° is ______.
The domain of the function defind by f(x) `= "sin"^-1 sqrt("x" - 1)` is ____________.
The value of `"tan"^-1 (1/2) + "tan"^-1(1/3) + "tan"^-1(7/8)` is ____________.
If `"tan"^-1 2 "x + tan"^-1 3 "x" = pi/4`, then x is ____________.
`"tan"^-1 1 + "cos"^-1 ((-1)/2) + "sin"^-1 ((-1)/2)`
`"tan"^-1 (sqrt3)`
`"cos"^-1 (1/2)`
If `"sin" {"sin"^-1 (1/2) + "cos"^-1 "x"} = 1`, then the value of x is ____________.
The Government of India is planning to fix a hoarding board at the face of a building on the road of a busy market for awareness on COVID-19 protocol. Ram, Robert and Rahim are the three engineers who are working on this project. “A” is considered to be a person viewing the hoarding board 20 metres away from the building, standing at the edge of a pathway nearby. Ram, Robert and Rahim suggested to the firm to place the hoarding board at three different locations namely C, D and E. “C” is at the height of 10 metres from the ground level. For viewer A, the angle of elevation of “D” is double the angle of elevation of “C” The angle of elevation of “E” is triple the angle of elevation of “C” for the same viewer. Look at the figure given and based on the above information answer the following:
Measure of ∠CAB = ________.
`tan(2tan^-1 1/5 + sec^-1 sqrt(5)/2 + 2tan^-1 1/8)` is equal to ______.
If `cos^-1(2/(3x)) + cos^-1(3/(4x)) = π/2(x > 3/4)`, then x is equal to ______.
Find the value of `tan^-1 [2 cos (2 sin^-1 1/2)] + tan^-1 1`.