Advertisements
Advertisements
Question
If `sin^-1 ((2"a")/(1 + "a"^2)) + cos^-1 ((1 - "a"^2)/(1 + "a"^2)) = tan^-1 ((2x)/(1 - x^2))`. where a, x ∈ ] 0, 1, then the value of x is ______.
Options
0
`"a"/2`
a
`(2"a")/(1 - "a"^2)`
Solution
If `sin^-1 ((2"a")/(1 + "a"^2)) + cos^-1 ((1 - "a"^2)/(1 + "a"^2)) = tan^-1 ((2x)/(1 - x^2))`. where a, x ∈ ] 0, 1, then the value of x is `(2"a")/(1 - "a"^2)`.
Explanation:
We have, `sin^-1 (2"a")/(1 + "a"^2) + cos^-1 (1 - "a"^2)/(1 + "a"^2) = tan^-1 (2x)/(1 - x^2)`
⇒ `2tan^-1"a" + 2tan^-1"a" = 2tan^-1x` .....`[(because 2tan^-1x = tan^-1 (2x)/(1 - x^2)),(2tan^-1x = sin^-1 (2x)/(1 + x^2)),(2tan^-1x = cos^-1 (1 - x^2)/(1 + x^2))]`
⇒ `2tan^-1"a" = tan^-1x`
⇒ `tan^-1 (2"a")/(1 - "a"^2) = tan^-1x`
⇒ x = `(2"a")/(1 - "a"^2)`
APPEARS IN
RELATED QUESTIONS
If `sin (sin^(−1)(1/5)+cos^(−1) x)=1`, then find the value of x.
Prove `tan^(-1) 2/11 + tan^(-1) 7/24 = tan^(-1) 1/2`
Prove `2 tan^(-1) 1/2 + tan^(-1) 1/7 = tan^(-1) 31/17`
Write the following function in the simplest form:
`tan^(-1) (sqrt(1+x^2) -1)/x, x != 0`
Find the value of `cot(tan^(-1) a + cot^(-1) a)`
Find the value of the given expression.
`sin^(-1) (sin (2pi)/3)`
Prove that:
`tan^(-1) sqrtx = 1/2 cos^(-1) ((1-x)/(1+x)) , x in [0, 1]`
Prove that:
`cot^(-1) ((sqrt(1+sin x) + sqrt(1-sinx))/(sqrt(1+sin x) - sqrt(1- sinx))) = x/2`, `x in (0, pi/4)`
Prove that `tan {pi/4 + 1/2 cos^(-1) a/b} + tan {pi/4 - 1/2 cos^(-1) a/b} = (2b)/a`
Solve for x : \[\cos \left( \tan^{- 1} x \right) = \sin \left( \cot^{- 1} \frac{3}{4} \right)\] .
If y = `(x sin^-1 x)/sqrt(1 -x^2)`, prove that: `(1 - x^2)dy/dx = x + y/x`
Solve for x : `tan^-1 ((2-"x")/(2+"x")) = (1)/(2)tan^-1 ("x")/(2), "x">0.`
Find the value, if it exists. If not, give the reason for non-existence
`sin^-1 [sin 5]`
Find the value of the expression in terms of x, with the help of a reference triangle
sin (cos–1(1 – x))
Find the value of `sin^-1[cos(sin^-1 (sqrt(3)/2))]`
If tan–1x + tan–1y + tan–1z = π, show that x + y + z = xyz
Solve: `cot^-1 x - cot^-1 (x + 2) = pi/12, x > 0`
Choose the correct alternative:
If `sin^-1x + sin^-1y = (2pi)/3` ; then `cos^-1x + cos^-1y` is equal to
Choose the correct alternative:
If `cot^-1(sqrt(sin alpha)) + tan^-1(sqrt(sin alpha))` = u, then cos 2u is equal to
Evaluate tan (tan–1(– 4)).
Prove that `2sin^-1 3/5 - tan^-1 17/31 = pi/4`
Prove that cot–17 + cot–18 + cot–118 = cot–13
`"cos" (2 "tan"^-1 1/7) - "sin" (4 "sin"^-1 1/3) =` ____________.
`"tan"^-1 1/3 + "tan"^-1 1/5 + "tan"^-1 1/7 = "tan"^-1 1/8 =` ____________.
If `3 "sin"^-1 ((2"x")/(1 + "x"^2)) - 4 "cos"^-1 ((1 - "x"^2)/(1 + "x"^2)) + 2 "tan"^-1 ((2"x")/(1 - "x"^2)) = pi/3` then x is equal to ____________.
The Simplest form of `cot^-1 (1/sqrt(x^2 - 1))`, |x| > 1 is
Find the value of `cos^-1 (1/2) + 2sin^-1 (1/2) ->`:-
Find the value of `tan^-1 [2 cos (2 sin^-1 1/2)] + tan^-1 1`.
The value of cosec `[sin^-1((-1)/2)] - sec[cos^-1((-1)/2)]` is equal to ______.