English

If aaaasin-1(2a1+a2)+cos-1(1-a21+a2)=tan-1(2x1-x2). where a, x ∈ ] 0, 1, then the value of x is ______. - Mathematics

Advertisements
Advertisements

Question

If `sin^-1 ((2"a")/(1 + "a"^2)) + cos^-1 ((1 - "a"^2)/(1 + "a"^2)) = tan^-1 ((2x)/(1 - x^2))`. where a, x ∈ ] 0, 1, then the value of x is ______.

Options

  • 0

  • `"a"/2`

  • a

  • `(2"a")/(1 - "a"^2)`

MCQ
Fill in the Blanks

Solution

If `sin^-1 ((2"a")/(1 + "a"^2)) + cos^-1 ((1 - "a"^2)/(1 + "a"^2)) = tan^-1 ((2x)/(1 - x^2))`. where a, x ∈ ] 0, 1, then the value of x is `(2"a")/(1 - "a"^2)`.

Explanation:

We have, `sin^-1   (2"a")/(1 + "a"^2) + cos^-1  (1 - "a"^2)/(1 + "a"^2) = tan^-1  (2x)/(1 - x^2)`

⇒ `2tan^-1"a" + 2tan^-1"a" = 2tan^-1x` .....`[(because 2tan^-1x = tan^-1  (2x)/(1 - x^2)),(2tan^-1x = sin^-1  (2x)/(1 + x^2)),(2tan^-1x = cos^-1  (1 - x^2)/(1 + x^2))]`

⇒ `2tan^-1"a" = tan^-1x`

⇒ `tan^-1  (2"a")/(1 - "a"^2) = tan^-1x`

⇒ x = `(2"a")/(1 - "a"^2)`

shaalaa.com
  Is there an error in this question or solution?
Chapter 2: Inverse Trigonometric Functions - Exercise [Page 38]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 2 Inverse Trigonometric Functions
Exercise | Q 31 | Page 38

RELATED QUESTIONS

 

If `sin (sin^(−1)(1/5)+cos^(−1) x)=1`, then find the value of x.

 

Prove `tan^(-1)  2/11 + tan^(-1)  7/24 = tan^(-1)  1/2`


Prove `2 tan^(-1)  1/2 + tan^(-1)  1/7 = tan^(-1)  31/17`


Write the following function in the simplest form:

`tan^(-1)  (sqrt(1+x^2) -1)/x, x != 0`


Find the value of `cot(tan^(-1) a + cot^(-1) a)`


Find the value of the given expression.

`sin^(-1) (sin  (2pi)/3)`


Prove that:

`tan^(-1) sqrtx = 1/2 cos^(-1) ((1-x)/(1+x)) , x in [0, 1]`


Prove that:

`cot^(-1)  ((sqrt(1+sin x) + sqrt(1-sinx))/(sqrt(1+sin x) - sqrt(1- sinx))) = x/2`, `x in (0, pi/4)` 


Prove that `tan {pi/4 + 1/2 cos^(-1)  a/b} + tan {pi/4 - 1/2 cos^(-1)  a/b} = (2b)/a`


Solve for x : \[\cos \left( \tan^{- 1} x \right) = \sin \left( \cot^{- 1} \frac{3}{4} \right)\] .


If y = `(x sin^-1 x)/sqrt(1 -x^2)`, prove that: `(1 - x^2)dy/dx = x + y/x`


Solve for x : `tan^-1 ((2-"x")/(2+"x")) = (1)/(2)tan^-1  ("x")/(2), "x">0.`


Find the value, if it exists. If not, give the reason for non-existence

`sin^-1 [sin 5]`


Find the value of the expression in terms of x, with the help of a reference triangle

sin (cos–1(1 – x))


Find the value of `sin^-1[cos(sin^-1 (sqrt(3)/2))]`


If tan–1x + tan1y + tan1z = π, show that x + y + z = xyz


Solve: `cot^-1 x - cot^-1 (x + 2) = pi/12, x > 0`


Choose the correct alternative:

If `sin^-1x + sin^-1y = (2pi)/3` ; then `cos^-1x + cos^-1y` is equal to


Choose the correct alternative:

If `cot^-1(sqrt(sin alpha)) + tan^-1(sqrt(sin alpha))` = u, then cos 2u is equal to


Evaluate tan (tan–1(– 4)).


Prove that `2sin^-1  3/5 - tan^-1  17/31 = pi/4`


Prove that cot–17 + cot–18 + cot–118 = cot–13


`"cos" (2  "tan"^-1 1/7) - "sin" (4  "sin"^-1 1/3) =` ____________.


`"tan"^-1 1/3 + "tan"^-1 1/5 + "tan"^-1 1/7 = "tan"^-1 1/8 =` ____________.


If `3  "sin"^-1 ((2"x")/(1 + "x"^2)) - 4  "cos"^-1 ((1 - "x"^2)/(1 + "x"^2)) + 2 "tan"^-1 ((2"x")/(1 - "x"^2)) = pi/3` then x is equal to ____________.


The Simplest form of `cot^-1 (1/sqrt(x^2 - 1))`, |x| > 1 is


Find the value of `cos^-1 (1/2) + 2sin^-1 (1/2) ->`:-


Find the value of `tan^-1 [2 cos (2 sin^-1  1/2)] + tan^-1 1`.


The value of cosec `[sin^-1((-1)/2)] - sec[cos^-1((-1)/2)]` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×