मराठी

If aaaasin-1(2a1+a2)+cos-1(1-a21+a2)=tan-1(2x1-x2). where a, x ∈ ] 0, 1, then the value of x is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

If `sin^-1 ((2"a")/(1 + "a"^2)) + cos^-1 ((1 - "a"^2)/(1 + "a"^2)) = tan^-1 ((2x)/(1 - x^2))`. where a, x ∈ ] 0, 1, then the value of x is ______.

पर्याय

  • 0

  • `"a"/2`

  • a

  • `(2"a")/(1 - "a"^2)`

MCQ
रिकाम्या जागा भरा

उत्तर

If `sin^-1 ((2"a")/(1 + "a"^2)) + cos^-1 ((1 - "a"^2)/(1 + "a"^2)) = tan^-1 ((2x)/(1 - x^2))`. where a, x ∈ ] 0, 1, then the value of x is `(2"a")/(1 - "a"^2)`.

Explanation:

We have, `sin^-1   (2"a")/(1 + "a"^2) + cos^-1  (1 - "a"^2)/(1 + "a"^2) = tan^-1  (2x)/(1 - x^2)`

⇒ `2tan^-1"a" + 2tan^-1"a" = 2tan^-1x` .....`[(because 2tan^-1x = tan^-1  (2x)/(1 - x^2)),(2tan^-1x = sin^-1  (2x)/(1 + x^2)),(2tan^-1x = cos^-1  (1 - x^2)/(1 + x^2))]`

⇒ `2tan^-1"a" = tan^-1x`

⇒ `tan^-1  (2"a")/(1 - "a"^2) = tan^-1x`

⇒ x = `(2"a")/(1 - "a"^2)`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Inverse Trigonometric Functions - Exercise [पृष्ठ ३८]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 2 Inverse Trigonometric Functions
Exercise | Q 31 | पृष्ठ ३८

संबंधित प्रश्‍न

If a line makes angles 90°, 60° and θ with x, y and z-axis respectively, where θ is acute, then find θ.


Write the following function in the simplest form:

`tan^(-1) ((3a^2 x - x^3)/(a^3 - 3ax^2)), a > 0; (-a)/sqrt3 <= x a/sqrt3`


Find the value of the following:

`tan^-1 [2 cos (2  sin^-1 1/2)]`


Find the value of following:

`tan  1/2 [sin^(-1)  (2x)/(1+ x^2) + cos^(-1)  (1-y^2)/(1+y^2)], |x| < 1, y> 0  and xy < 1`


Find the value of the given expression.

`sin^(-1) (sin  (2pi)/3)`


sin–1 (1 – x) – 2 sin–1 x = `pi/2` then x is equal to ______.


Solve for x : `tan^-1 ((2-"x")/(2+"x")) = (1)/(2)tan^-1  ("x")/(2), "x">0.`


Find the value, if it exists. If not, give the reason for non-existence

`sin^-1 (cos pi)`


Find the value, if it exists. If not, give the reason for non-existence

`sin^-1 [sin 5]`


Prove that `tan^-1x + tan^-1y + tan^-1z = tan^-1[(x + y + z - xyz)/(1 - xy - yz - zx)]`


Solve: `tan^-1x = cos^-1  (1 - "a"^2)/(1 + "a"^2) - cos^-1  (1 - "b"^2)/(1 + "b"^2), "a" > 0, "b" > 0`


Find the number of solutions of the equation `tan^-1 (x - 1) + tan^-1x + tan^-1(x + 1) = tan^-1(3x)`


Choose the correct alternative:

`sin^-1  3/5 - cos^-1  13/13 + sec^-1  5/3 - "cosec"^-1  13/12` is equal to


Choose the correct alternative:

`sin^-1 (tan  pi/4) - sin^-1 (sqrt(3/x)) = pi/6`. Then x is a root of the equation


Choose the correct alternative:

If |x| ≤ 1, then `2tan^-1x - sin^-1  (2x)/(1 + x^2)` is equal to


Prove that `sin^-1  8/17 + sin^-1  3/5 = sin^-1  7/85`


The value of the expression `tan (1/2 cos^-1  2/sqrt(5))` is ______.


If y = `2 tan^-1x + sin^-1 ((2x)/(1 + x^2))` for all x, then ______ < y < ______.


The value of `"tan"^ -1 (3/4) + "tan"^-1 (1/7)` is ____________.


The value of sin (2tan-1 (0.75)) is equal to ____________.


`"cot" ("cosec"^-1  5/3 + "tan"^-1  2/3) =` ____________.


The value of cot-1 9 + cosec-1 `(sqrt41/4)` is given by ____________.


Simplest form of `tan^-1 ((sqrt(1 + cos "x") + sqrt(1 - cos "x"))/(sqrt(1 + cos "x") - sqrt(1 - cos "x")))`, `π < "x" < (3π)/2` is:


`"tan"^-1 1 + "cos"^-1 ((-1)/2) + "sin"^-1 ((-1)/2)`


`"cos"^-1 (1/2)`


`"sin"^-1 ((-1)/2)`


Write the following function in the simplest form:

`tan^-1 ((cos x - sin x)/(cos x + sin x)), (-pi)/4 < x < (3 pi)/4`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×