Advertisements
Advertisements
प्रश्न
If y = `2 tan^-1x + sin^-1 ((2x)/(1 + x^2))` for all x, then ______ < y < ______.
उत्तर
If y = `2 tan^-1x + sin^-1 ((2x)/(1 + x^2))` for all x, then – 2π < y < 2π.
Explanation:
y = `2 tan^-1x + sin^-1 ((2x)/(1 + x^2))`
⇒ y = `2 tan^-1x + 2 tan^-1x`1
⇒ y = `4 tan^-1x` ......`[because sin^1 ((x)/(1 +x^2)) = 2tan^-1x]`
Now `(-pi)/2 < tan^-1x < pi/2`
⇒ `-4 xx pi/2 < 4 tan^-1x < 4 xx pi/2`
⇒ – 2π < y < 2π.
APPEARS IN
संबंधित प्रश्न
If `sin (sin^(−1)(1/5)+cos^(−1) x)=1`, then find the value of x.
Prove that `cot^(-1)((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx)))=x/2;x in (0,pi/4) `
Prove that `2tan^(-1)(1/5)+sec^(-1)((5sqrt2)/7)+2tan^(-1)(1/8)=pi/4`
Prove that: `tan^(-1)(1/2)+tan^(-1)(1/5)+tan^(-1)(1/8)=pi/4`
Solve for x : tan-1 (x - 1) + tan-1x + tan-1 (x + 1) = tan-1 3x
If `tan^-1(2x)+tan^-1(3x)=pi/4`, then find the value of ‘x’.
Prove the following:
`3cos^(-1) x = cos^(-1)(4x^3 - 3x), x in [1/2, 1]`
Find the value of the given expression.
`sin^(-1) (sin (2pi)/3)`
Prove that:
`tan^(-1) 63/16 = sin^(-1) 5/13 + cos^(-1) 3/5`
Solve the following equation:
`2 tan^(-1) (cos x) = tan^(-1) (2 cosec x)`
Prove that `3sin^(-1)x = sin^(-1) (3x - 4x^3)`, `x in [-1/2, 1/2]`
Solve for x : `tan^-1 ((2-"x")/(2+"x")) = (1)/(2)tan^-1 ("x")/(2), "x">0.`
Find the value of the expression in terms of x, with the help of a reference triangle
`tan(sin^-1(x + 1/2))`
Evaluate: `tan^-1 sqrt(3) - sec^-1(-2)`.
Prove that `2sin^-1 3/5 - tan^-1 17/31 = pi/4`
Solve the equation `sin^-1 6x + sin^-1 6sqrt(3)x = - pi/2`
Prove that `sin^-1 8/17 + sin^-1 3/5 = sin^-1 7/85`
The value of the expression `tan (1/2 cos^-1 2/sqrt(5))` is ______.
If `"sec" theta = "x" + 1/(4 "x"), "x" in "R, x" ne 0,`then the value of `"sec" theta + "tan" theta` is ____________.
If `"cot"^-1 (sqrt"cos" alpha) - "tan"^-1 (sqrt"cos" alpha) = "x",` the sinx is equal to ____________.
The value of expression 2 `"sec"^-1 2 + "sin"^-1 (1/2)`
If tan-1 2x + tan-1 3x = `pi/4,` then x is ____________.
The value of `"cos"^-1 ("cos" ((33pi)/5))` is ____________.
`"sin"^-1 (1 - "x") - 2 "sin"^-1 "x" = pi/2`
If `6"sin"^-1 ("x"^2 - 6"x" + 8.5) = pi,` then x is equal to ____________.
`"tan"^-1 (sqrt3)`
Solve for x : `{"x cos" ("cot"^-1 "x") + "sin" ("cot"^-1 "x")}^2` = `51/50
The value of `tan^-1 (x/y) - tan^-1 (x - y)/(x + y)` is equal to