Advertisements
Advertisements
प्रश्न
Prove the following:
`3cos^(-1) x = cos^(-1)(4x^3 - 3x), x in [1/2, 1]`
उत्तर १
To prove: `3cos^(-1) x = cos^(-1) (4x^3 - 3x), x in [1/2, 1]`
उत्तर २
To prove `3cos^(-1) x = cos^(-1) (4x^3 - 3x), x in [1/2, 1]`
Let x = cosθ. Then, cos−1 x = θ.
We have,
R.H.S = `cos^(-1)(4x^3 - 3x)`
`= cos^(-1)(4cos^3 theta- 3cos theta)`
`= cos^(-1)(cos 3theta) = cos^(-1)(4x^3 - 3x)`
`= 3theta = cos^(-1)(4x^3 - 3x)`
`= 3cos^(-1) x = cos^(-1)(4x^3 - 3x)`
L.H.S
APPEARS IN
संबंधित प्रश्न
Prove the following:
`3sin^(-1) x = sin^(-1)(3x - 4x^3), x in [-1/2, 1/2]`
Prove `tan^(-1) 2/11 + tan^(-1) 7/24 = tan^(-1) 1/2`
Write the function in the simplest form: `tan^(-1) ((cos x - sin x)/(cos x + sin x)) `,` 0 < x < pi`
Write the following function in the simplest form:
`tan^(-1) x/(sqrt(a^2 - x^2))`, |x| < a
`sin[pi/3 - sin^(-1) (-1/2)]` is equal to ______.
Prove that:
`tan^(-1) sqrtx = 1/2 cos^(-1) ((1-x)/(1+x)) , x in [0, 1]`
Prove `(9pi)/8 - 9/4 sin^(-1) 1/3 = 9/4 sin^(-1) (2sqrt2)/3`
Solve for x : `tan^-1 ((2-"x")/(2+"x")) = (1)/(2)tan^-1 ("x")/(2), "x">0.`
Find the value, if it exists. If not, give the reason for non-existence
`sin^-1 (cos pi)`
Find the value of the expression in terms of x, with the help of a reference triangle
`tan(sin^-1(x + 1/2))`
Prove that `tan^-1x + tan^-1 (2x)/(1 - x^2) = tan^-1 (3x - x^3)/(1 - 3x^2), |x| < 1/sqrt(3)`
Simplify: `tan^-1 x/y - tan^-1 (x - y)/(x + y)`
Solve: `sin^-1 5/x + sin^-1 12/x = pi/2`
Choose the correct alternative:
`sin^-1 3/5 - cos^-1 13/13 + sec^-1 5/3 - "cosec"^-1 13/12` is equal to
Choose the correct alternative:
If `sin^-1x + cot^-1 (1/2) = pi/2`, then x is equal to
Choose the correct alternative:
sin(tan–1x), |x| < 1 is equal to
Evaluate: `sin^-1 [cos(sin^-1 sqrt(3)/2)]`
Solve the equation `sin^-1 6x + sin^-1 6sqrt(3)x = - pi/2`
If α ≤ 2 sin–1x + cos–1x ≤ β, then ______.
Prove that `tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/((1 + x^2) - sqrt(1 - x^2))) = pi/2 + 1/2 cos^-1x^2`
If y = `2 tan^-1x + sin^-1 ((2x)/(1 + x^2))` for all x, then ______ < y < ______.
The value of cos215° - cos230° + cos245° - cos260° + cos275° is ______.
`"tan"^-1 1 + "cos"^-1 ((-1)/2) + "sin"^-1 ((-1)/2)`
The value of expression 2 `"sec"^-1 2 + "sin"^-1 (1/2)`
`"cot" ("cosec"^-1 5/3 + "tan"^-1 2/3) =` ____________.
The value of `"tan"^-1 (1/2) + "tan"^-1(1/3) + "tan"^-1(7/8)` is ____________.
`"cos"^-1["cos"(2"cot"^-1(sqrt2 - 1))]` = ____________.
`"tan"^-1 (sqrt3)`
`"cos"^-1 (1/2)`
If `"sin"^-1 (1 - "x") - 2 "sin"^-1 ("x") = pi/2,` then x is equal to ____________.
What is the simplest form of `tan^-1 sqrt(1 - x^2 - 1)/x, x ≠ 0`
`sin^-1(1 - x) - 2sin^-1 x = pi/2`, tan 'x' is equal to
The set of all values of k for which (tan–1 x)3 + (cot–1 x)3 = kπ3, x ∈ R, is the internal ______.
The value of cosec `[sin^-1((-1)/2)] - sec[cos^-1((-1)/2)]` is equal to ______.
If sin–1x + sin–1y + sin–1z = π, show that `x^2 - y^2 - z^2 + 2yzsqrt(1 - x^2) = 0`