Advertisements
Advertisements
प्रश्न
Prove the following:
`3sin^(-1) x = sin^(-1)(3x - 4x^3), x in [-1/2, 1/2]`
उत्तर
To prove : `3sin^(-1) x = sin^(-1)(3x - 4x^3), x in [-1/2, 1/2]`
Let x = sinθ. Then, `sin^(-1) x = 0`
We have
R.H.S = `sin^(-1) (3x - 4x^3) = sin^(-1) (3sin theta - 4 sin^3 theta)`
`= sin^(-1) (sin 3theta) = sin^(-1) (3sin theta - 4 sin^3theta)`
= `3 theta = sin^(-1) (3sin theta - 4 sin^3theta)`
`= 3 sin^(-1) x = sin^(-1) (3sin theta - 4 sin^3theta)`
L.H.S
APPEARS IN
संबंधित प्रश्न
Prove that `2tan^(-1)(1/5)+sec^(-1)((5sqrt2)/7)+2tan^(-1)(1/8)=pi/4`
Prove that: `tan^(-1)(1/2)+tan^(-1)(1/5)+tan^(-1)(1/8)=pi/4`
Solve for x : tan-1 (x - 1) + tan-1x + tan-1 (x + 1) = tan-1 3x
If a line makes angles 90°, 60° and θ with x, y and z-axis respectively, where θ is acute, then find θ.
If `tan^-1(2x)+tan^-1(3x)=pi/4`, then find the value of ‘x’.
Find the value of following:
`tan 1/2 [sin^(-1) (2x)/(1+ x^2) + cos^(-1) (1-y^2)/(1+y^2)], |x| < 1, y> 0 and xy < 1`
Find the value of the given expression.
`sin^(-1) (sin (2pi)/3)`
Prove that:
`cos^(-1) 12/13 + sin^(-1) 3/5 = sin^(-1) 56/65`
Solve the following equation:
`2 tan^(-1) (cos x) = tan^(-1) (2 cosec x)`
Solve for x : `tan^-1 ((2-"x")/(2+"x")) = (1)/(2)tan^-1 ("x")/(2), "x">0.`
Find the value of the expression in terms of x, with the help of a reference triangle
sin (cos–1(1 – x))
Find the value of the expression in terms of x, with the help of a reference triangle
cos (tan–1 (3x – 1))
Find the value of the expression in terms of x, with the help of a reference triangle
`tan(sin^-1(x + 1/2))`
Find the value of `cot[sin^-1 3/5 + sin^-1 4/5]`
Find the value of `tan(sin^-1 3/5 + cot^-1 3/2)`
Prove that `tan^-1x + tan^-1y + tan^-1z = tan^-1[(x + y + z - xyz)/(1 - xy - yz - zx)]`
Simplify: `tan^-1 x/y - tan^-1 (x - y)/(x + y)`
Evaluate: `tan^-1 sqrt(3) - sec^-1(-2)`.
Show that `tan(1/2 sin^-1 3/4) = (4 - sqrt(7))/3` and justify why the other value `(4 + sqrt(7))/3` is ignored?
If `sin^-1 ((2"a")/(1 + "a"^2)) + cos^-1 ((1 - "a"^2)/(1 + "a"^2)) = tan^-1 ((2x)/(1 - x^2))`. where a, x ∈ ] 0, 1, then the value of x is ______.
If cos–1α + cos–1β + cos–1γ = 3π, then α(β + γ) + β(γ + α) + γ(α + β) equals ______.
The value of cot–1(–x) for all x ∈ R in terms of cot–1x is ______.
The maximum value of sinx + cosx is ____________.
Solve for x : `"sin"^-1 2 "x" + sin^-1 3"x" = pi/3`
If `"tan"^-1 ("cot" theta) = 2theta, "then" theta` is equal to ____________.
`"cot" (pi/4 - 2 "cot"^-1 3) =` ____________.
Simplest form of `tan^-1 ((sqrt(1 + cos "x") + sqrt(1 - cos "x"))/(sqrt(1 + cos "x") - sqrt(1 - cos "x")))`, `π < "x" < (3π)/2` is:
The value of `"tan"^-1 (1/2) + "tan"^-1(1/3) + "tan"^-1(7/8)` is ____________.
Solve for x : `"sin"^-1 2"x" + "sin"^-1 3"x" = pi/3`
`"tan" (pi/4 + 1/2 "cos"^-1 "x") + "tan" (pi/4 - 1/2 "cos"^-1 "x") =` ____________.
`"tan"^-1 (sqrt3)`
`"cos"^-1 (1/2)`
If `"sin" {"sin"^-1 (1/2) + "cos"^-1 "x"} = 1`, then the value of x is ____________.
`tan^-1 1/2 + tan^-1 2/11` is equal to
Find the value of `cos^-1 (1/2) + 2sin^-1 (1/2) ->`:-
`50tan(3tan^-1(1/2) + 2cos^-1(1/sqrt(5))) + 4sqrt(2) tan(1/2tan^-1(2sqrt(2)))` is equal to ______.
If `tan^-1 ((x - 1)/(x + 1)) + tan^-1 ((2x - 1)/(2x + 1)) = tan^-1 (23/36)` = then prove that 24x2 – 23x – 12 = 0
Solve for x: `sin^-1(x/2) + cos^-1x = π/6`
Solve:
sin–1(x) + sin–1(1 – x) = cos–1x.