Advertisements
Advertisements
प्रश्न
Solve for x : tan-1 (x - 1) + tan-1x + tan-1 (x + 1) = tan-1 3x
उत्तर
Given that tan-1(x-1)+tan-1x+tan-1(x-1)=tan-13x
⇒ tan-1(x-1)+tan-1(x+1)=tan-13x-tan-1x ...(1)
We know that, tan-1 A + tan-1 B = tan-1 `((A+B)/(1-AB))` and tan-1 A - tan-1 B = tan-1`((A-B)/(1+AB))`
Thus, tan-1(x-1)+tan-1(x+1)=tan-1 `((x-1+x+1)/(1-(x-1)(x+1)))`
`=tan^(-1)((2x)/(1-(x^2-1)))`
`=tan^(-1)((2x)/(2-x^2)) `
Similarly, `tan^(-1)3x-tan^(-1)x=tan^(-1)((3x-x)/(1+3x(x)))`
`=tan^(-1)((2x)/(1+3x^2)) `
From equations (1), (2) and (3), we have,
`tan^(-1)((2x)/(2-x^2))=tan^(-1)((2x)/(1+3x^2))`
`=>(2x)/(2-x^2)=(2x)/(1+3x^2)`
`=>1/(2-x^2)=1/(1+3x^2)`
`=>2-x^2=1+3x^2`
`=>4x^2=1`
`=>x^2=1/4`
`=>x=+-1/2`
APPEARS IN
संबंधित प्रश्न
Prove that `cot^(-1)((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx)))=x/2;x in (0,pi/4) `
Prove that:
`tan^(-1)""1/5+tan^(-1)""1/7+tan^(-1)""1/3+tan^(-1)""1/8=pi/4`
If `tan^-1(2x)+tan^-1(3x)=pi/4`, then find the value of ‘x’.
Prove the following:
`3sin^(-1) x = sin^(-1)(3x - 4x^3), x in [-1/2, 1/2]`
Prove the following:
`3cos^(-1) x = cos^(-1)(4x^3 - 3x), x in [1/2, 1]`
Write the following function in the simplest form:
`tan^(-1) (sqrt((1-cos x)/(1 + cos x))), x < pi`
Find the value of the given expression.
`sin^(-1) (sin (2pi)/3)`
Prove `tan^(-1) 1/5 + tan^(-1) (1/7) + tan^(-1) 1/3 + tan^(-1) 1/8 = pi/4`
Prove `(9pi)/8 - 9/4 sin^(-1) 1/3 = 9/4 sin^(-1) (2sqrt2)/3`
Choose the correct alternative:
If `sin^-1x + sin^-1y = (2pi)/3` ; then `cos^-1x + cos^-1y` is equal to
Choose the correct alternative:
`sin^-1 3/5 - cos^-1 13/13 + sec^-1 5/3 - "cosec"^-1 13/12` is equal to
Choose the correct alternative:
The equation tan–1x – cot–1x = `tan^-1 (1/sqrt(3))` has
Evaluate `cos[sin^-1 1/4 + sec^-1 4/3]`
Solve the equation `sin^-1 6x + sin^-1 6sqrt(3)x = - pi/2`
If α ≤ 2 sin–1x + cos–1x ≤ β, then ______.
If 3 tan–1x + cot–1x = π, then x equals ______.
If `sin^-1 ((2"a")/(1 + "a"^2)) + cos^-1 ((1 - "a"^2)/(1 + "a"^2)) = tan^-1 ((2x)/(1 - x^2))`. where a, x ∈ ] 0, 1, then the value of x is ______.
The value of cos215° - cos230° + cos245° - cos260° + cos275° is ______.
The maximum value of sinx + cosx is ____________.
The value of `"tan"^ -1 (3/4) + "tan"^-1 (1/7)` is ____________.
If `"tan"^-1 ("cot" theta) = 2theta, "then" theta` is equal to ____________.
`"tan" (pi/4 + 1/2 "cos"^-1 "x") + "tan" (pi/4 - 1/2 "cos"^-1 "x") =` ____________.
If `6"sin"^-1 ("x"^2 - 6"x" + 8.5) = pi,` then x is equal to ____________.
`"cos"^-1 1/2 + 2 "sin"^-1 1/2` is equal to ____________.
If `"sin" {"sin"^-1 (1/2) + "cos"^-1 "x"} = 1`, then the value of x is ____________.
If `3 "sin"^-1 ((2"x")/(1 + "x"^2)) - 4 "cos"^-1 ((1 - "x"^2)/(1 + "x"^2)) + 2 "tan"^-1 ((2"x")/(1 - "x"^2)) = pi/3` then x is equal to ____________.
What is the value of cos (sec–1x + cosec–1x), |x| ≥ 1
The value of `tan^-1 (x/y) - tan^-1 (x - y)/(x + y)` is equal to
`sin^-1(1 - x) - 2sin^-1 x = pi/2`, tan 'x' is equal to