मराठी

If 3 tan–1x + cot–1x = π, then x equals ______. - Mathematics

Advertisements
Advertisements

प्रश्न

If 3 tan–1x + cot–1x = π, then x equals ______.

पर्याय

  • 0

  • 1

  • – 1

  • `1/2`

MCQ
रिकाम्या जागा भरा

उत्तर

If 3 tan–1x + cot–1x = π, then x equals 1.

Explanation:

Given that 3 tan–1x + cot–1x = π

⇒ 2 tan–1x + tan–1x + cot–1x = π

⇒ `2 tan^-1x + pi/2` = π  ......`[because tan^-1x + cot^-1x = pi/2]`

⇒ `2tan^-1x = pi - pi/2`

⇒ `2tan^-1x = pi/2`

⇒ `2tan^-1x = pi/4`

⇒ `tan^-1x = tan^-1(1)`

⇒ x = 1

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Inverse Trigonometric Functions - Exercise [पृष्ठ ३७]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 2 Inverse Trigonometric Functions
Exercise | Q 22 | पृष्ठ ३७

संबंधित प्रश्‍न

If `tan^-1(2x)+tan^-1(3x)=pi/4`, then find the value of ‘x’.


Prove the following: 

`3cos^(-1) x = cos^(-1)(4x^3 - 3x), x in [1/2, 1]`


Find the value of the given expression.

`tan^(-1) (tan  (3pi)/4)`


Solve  `tan^(-1) -  tan^(-1)  (x - y)/(x+y)` is equal to

(A) `pi/2`

(B). `pi/3` 

(C) `pi/4` 

(D) `(-3pi)/4`


Solve the following equation for x:  `cos (tan^(-1) x) = sin (cot^(-1)  3/4)`


Prove that

\[2 \tan^{- 1} \left( \frac{1}{5} \right) + \sec^{- 1} \left( \frac{5\sqrt{2}}{7} \right) + 2 \tan^{- 1} \left( \frac{1}{8} \right) = \frac{\pi}{4}\] .

 

Find: ∫ sin x · log cos x dx


Find the value, if it exists. If not, give the reason for non-existence

`sin^-1 (cos pi)`


Find the value of the expression in terms of x, with the help of a reference triangle

cos (tan–1 (3x – 1))


Solve: `2tan^-1 (cos x) = tan^-1 (2"cosec"  x)`


Choose the correct alternative:

If `cot^-1(sqrt(sin alpha)) + tan^-1(sqrt(sin alpha))` = u, then cos 2u is equal to


Evaluate `tan^-1(sin((-pi)/2))`.


Evaluate: `sin^-1 [cos(sin^-1 sqrt(3)/2)]`


Evaluate `cos[sin^-1  1/4 + sec^-1  4/3]`


Show that `2tan^-1 {tan  alpha/2 * tan(pi/4 - beta/2)} = tan^-1  (sin alpha cos beta)/(cosalpha + sinbeta)`


Prove that `tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/((1 + x^2) - sqrt(1 - x^2))) = pi/2 + 1/2 cos^-1x^2`


If `sin^-1 ((2"a")/(1 + "a"^2)) + cos^-1 ((1 - "a"^2)/(1 + "a"^2)) = tan^-1 ((2x)/(1 - x^2))`. where a, x ∈ ] 0, 1, then the value of x is ______.


If cos–1x > sin–1x, then ______.


If y = `2 tan^-1x + sin^-1 ((2x)/(1 + x^2))` for all x, then ______ < y < ______.


The value of cos215° - cos230° + cos245° - cos260° + cos275° is ______.


Solve for x : `"sin"^-1  2 "x" + sin^-1  3"x" = pi/3`


If `"cot"^-1 (sqrt"cos" alpha) - "tan"^-1 (sqrt"cos" alpha) = "x",` the sinx is equal to ____________.


`"cot" ("cosec"^-1  5/3 + "tan"^-1  2/3) =` ____________.


`"tan"^-1 (sqrt3)`


The Simplest form of `cot^-1 (1/sqrt(x^2 - 1))`, |x| > 1 is


Find the value of `cos^-1 (1/2) + 2sin^-1 (1/2) ->`:-


`50tan(3tan^-1(1/2) + 2cos^-1(1/sqrt(5))) + 4sqrt(2) tan(1/2tan^-1(2sqrt(2)))` is equal to ______.


`"tan" ^-1 sqrt3 - "cot"^-1 (- sqrt3)` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×