Advertisements
Advertisements
प्रश्न
If 3 tan–1x + cot–1x = π, then x equals ______.
पर्याय
0
1
– 1
`1/2`
उत्तर
If 3 tan–1x + cot–1x = π, then x equals 1.
Explanation:
Given that 3 tan–1x + cot–1x = π
⇒ 2 tan–1x + tan–1x + cot–1x = π
⇒ `2 tan^-1x + pi/2` = π ......`[because tan^-1x + cot^-1x = pi/2]`
⇒ `2tan^-1x = pi - pi/2`
⇒ `2tan^-1x = pi/2`
⇒ `2tan^-1x = pi/4`
⇒ `tan^-1x = tan^-1(1)`
⇒ x = 1
APPEARS IN
संबंधित प्रश्न
If `tan^-1(2x)+tan^-1(3x)=pi/4`, then find the value of ‘x’.
Prove the following:
`3cos^(-1) x = cos^(-1)(4x^3 - 3x), x in [1/2, 1]`
Find the value of the given expression.
`tan^(-1) (tan (3pi)/4)`
Solve `tan^(-1) - tan^(-1) (x - y)/(x+y)` is equal to
(A) `pi/2`
(B). `pi/3`
(C) `pi/4`
(D) `(-3pi)/4`
Solve the following equation for x: `cos (tan^(-1) x) = sin (cot^(-1) 3/4)`
Prove that
\[2 \tan^{- 1} \left( \frac{1}{5} \right) + \sec^{- 1} \left( \frac{5\sqrt{2}}{7} \right) + 2 \tan^{- 1} \left( \frac{1}{8} \right) = \frac{\pi}{4}\] .
Find: ∫ sin x · log cos x dx
Find the value, if it exists. If not, give the reason for non-existence
`sin^-1 (cos pi)`
Find the value of the expression in terms of x, with the help of a reference triangle
cos (tan–1 (3x – 1))
Solve: `2tan^-1 (cos x) = tan^-1 (2"cosec" x)`
Choose the correct alternative:
If `cot^-1(sqrt(sin alpha)) + tan^-1(sqrt(sin alpha))` = u, then cos 2u is equal to
Evaluate `tan^-1(sin((-pi)/2))`.
Evaluate: `sin^-1 [cos(sin^-1 sqrt(3)/2)]`
Evaluate `cos[sin^-1 1/4 + sec^-1 4/3]`
Show that `2tan^-1 {tan alpha/2 * tan(pi/4 - beta/2)} = tan^-1 (sin alpha cos beta)/(cosalpha + sinbeta)`
Prove that `tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/((1 + x^2) - sqrt(1 - x^2))) = pi/2 + 1/2 cos^-1x^2`
If `sin^-1 ((2"a")/(1 + "a"^2)) + cos^-1 ((1 - "a"^2)/(1 + "a"^2)) = tan^-1 ((2x)/(1 - x^2))`. where a, x ∈ ] 0, 1, then the value of x is ______.
If cos–1x > sin–1x, then ______.
If y = `2 tan^-1x + sin^-1 ((2x)/(1 + x^2))` for all x, then ______ < y < ______.
The value of cos215° - cos230° + cos245° - cos260° + cos275° is ______.
Solve for x : `"sin"^-1 2 "x" + sin^-1 3"x" = pi/3`
If `"cot"^-1 (sqrt"cos" alpha) - "tan"^-1 (sqrt"cos" alpha) = "x",` the sinx is equal to ____________.
`"cot" ("cosec"^-1 5/3 + "tan"^-1 2/3) =` ____________.
`"tan"^-1 (sqrt3)`
The Simplest form of `cot^-1 (1/sqrt(x^2 - 1))`, |x| > 1 is
Find the value of `cos^-1 (1/2) + 2sin^-1 (1/2) ->`:-
`50tan(3tan^-1(1/2) + 2cos^-1(1/sqrt(5))) + 4sqrt(2) tan(1/2tan^-1(2sqrt(2)))` is equal to ______.
`"tan" ^-1 sqrt3 - "cot"^-1 (- sqrt3)` is equal to ______.