Advertisements
Advertisements
प्रश्न
Solve the following equation for x: `cos (tan^(-1) x) = sin (cot^(-1) 3/4)`
उत्तर
The given equation is `cos (tan^(-1) x) = sin (cot^(-1) 3/4)`
`cos (tan^(-1) x) = sin(cot^(-1) 3/4)`
`=> cos (tan^(-1) x) = cos(pi/2 - cot^(-1) 3 /4)` `[sintheta = cos(pi/2 - theta)]`
`=> cos(tan^(-1) x) = cos(tan^(-1) (3/4))` `(tan^(-1) x + cot^(-1) x = pi/2)`
`=> tan^(-1) x = tan^(-1) (3/4)`
`=> x = 3/4`
APPEARS IN
संबंधित प्रश्न
Prove that `cot^(-1)((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx)))=x/2;x in (0,pi/4) `
Prove that `tan^(-1)((6x-8x^3)/(1-12x^2))-tan^(-1)((4x)/(1-4x^2))=tan^(-1)2x;|2x|<1/sqrt3`
Write the function in the simplest form: `tan^(-1) ((cos x - sin x)/(cos x + sin x)) `,` 0 < x < pi`
Write the following function in the simplest form:
`tan^(-1) x/(sqrt(a^2 - x^2))`, |x| < a
`cos^(-1) (cos (7pi)/6)` is equal to ______.
`sin[pi/3 - sin^(-1) (-1/2)]` is equal to ______.
Prove that:
`tan^(-1) 63/16 = sin^(-1) 5/13 + cos^(-1) 3/5`
Prove `(9pi)/8 - 9/4 sin^(-1) 1/3 = 9/4 sin^(-1) (2sqrt2)/3`
Solve `tan^(-1) - tan^(-1) (x - y)/(x+y)` is equal to
(A) `pi/2`
(B). `pi/3`
(C) `pi/4`
(D) `(-3pi)/4`
If tan-1 x - cot-1 x = tan-1 `(1/sqrt(3)),`x> 0 then find the value of x and hence find the value of sec-1 `(2/x)`.
Find the value of the expression in terms of x, with the help of a reference triangle
cos (tan–1 (3x – 1))
Find the value of `cot[sin^-1 3/5 + sin^-1 4/5]`
Prove that `tan^-1 2/11 + tan^-1 7/24 = tan^-1 1/2`
Choose the correct alternative:
`sin^-1 (tan pi/4) - sin^-1 (sqrt(3/x)) = pi/6`. Then x is a root of the equation
Evaluate `tan^-1(sin((-pi)/2))`.
Evaluate tan (tan–1(– 4)).
Evaluate: `tan^-1 sqrt(3) - sec^-1(-2)`.
Solve the equation `sin^-1 6x + sin^-1 6sqrt(3)x = - pi/2`
Prove that `tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/((1 + x^2) - sqrt(1 - x^2))) = pi/2 + 1/2 cos^-1x^2`
The value of the expression `tan (1/2 cos^-1 2/sqrt(5))` is ______.
If y = `2 tan^-1x + sin^-1 ((2x)/(1 + x^2))` for all x, then ______ < y < ______.
The value of cot–1(–x) for all x ∈ R in terms of cot–1x is ______.
If `"sec" theta = "x" + 1/(4 "x"), "x" in "R, x" ne 0,`then the value of `"sec" theta + "tan" theta` is ____________.
`"tan"^-1 1/3 + "tan"^-1 1/5 + "tan"^-1 1/7 + "tan"^-1 1/8 =` ____________.
`"sin"^-1 (1 - "x") - 2 "sin"^-1 "x" = pi/2`
If `3 "sin"^-1 ((2"x")/(1 + "x"^2)) - 4 "cos"^-1 ((1 - "x"^2)/(1 + "x"^2)) + 2 "tan"^-1 ((2"x")/(1 - "x"^2)) = pi/3` then x is equal to ____________.
What is the value of cos (sec–1x + cosec–1x), |x| ≥ 1