मराठी

Solve the Following Equation for X: `Cos (Tan(-1) X) = Sin (Cot(-1) 3by4)` - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the following equation for x:  `cos (tan^(-1) x) = sin (cot^(-1)  3/4)`

उत्तर

The given equation is `cos (tan^(-1) x) = sin (cot^(-1)  3/4)`

`cos (tan^(-1) x) = sin(cot^(-1)  3/4)`

`=> cos (tan^(-1) x) = cos(pi/2 - cot^(-1)  3 /4)`              `[sintheta = cos(pi/2 - theta)]`

`=> cos(tan^(-1) x) = cos(tan^(-1)  (3/4))`         `(tan^(-1) x + cot^(-1) x = pi/2)`

`=> tan^(-1) x = tan^(-1) (3/4)`

`=> x = 3/4`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2016-2017 (March) Delhi Set 3

संबंधित प्रश्‍न

Prove that `cot^(-1)((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx)))=x/2;x in (0,pi/4) `


 
 
 

Prove that `tan^(-1)((6x-8x^3)/(1-12x^2))-tan^(-1)((4x)/(1-4x^2))=tan^(-1)2x;|2x|<1/sqrt3`

 
 
 

Write the function in the simplest form:  `tan^(-1)  ((cos x - sin x)/(cos x + sin x)) `,` 0 < x < pi`


Write the following function in the simplest form:

`tan^(-1)  x/(sqrt(a^2 - x^2))`, |x| < a


`cos^(-1) (cos  (7pi)/6)` is equal to ______.


`sin[pi/3 - sin^(-1) (-1/2)]` is equal to ______.


Prove that:

`tan^(-1)  63/16 = sin^(-1)  5/13 + cos^(-1)  3/5`


Prove `(9pi)/8 - 9/4  sin^(-1)  1/3 = 9/4 sin^(-1)  (2sqrt2)/3`


Solve  `tan^(-1) -  tan^(-1)  (x - y)/(x+y)` is equal to

(A) `pi/2`

(B). `pi/3` 

(C) `pi/4` 

(D) `(-3pi)/4`


If tan-1 x - cot-1 x = tan-1 `(1/sqrt(3)),`x> 0 then find the value of x and hence find the value of sec-1 `(2/x)`.


Find the value of the expression in terms of x, with the help of a reference triangle

cos (tan–1 (3x – 1))


Find the value of `cot[sin^-1  3/5 + sin^-1  4/5]`


Prove that `tan^-1  2/11 + tan^-1  7/24 = tan^-1  1/2`


Choose the correct alternative:

`sin^-1 (tan  pi/4) - sin^-1 (sqrt(3/x)) = pi/6`. Then x is a root of the equation


Evaluate `tan^-1(sin((-pi)/2))`.


Evaluate tan (tan–1(– 4)).


Evaluate: `tan^-1 sqrt(3) - sec^-1(-2)`.


Solve the equation `sin^-1 6x + sin^-1 6sqrt(3)x = - pi/2`


Prove that `tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/((1 + x^2) - sqrt(1 - x^2))) = pi/2 + 1/2 cos^-1x^2`


The value of the expression `tan (1/2 cos^-1  2/sqrt(5))` is ______.


If y = `2 tan^-1x + sin^-1 ((2x)/(1 + x^2))` for all x, then ______ < y < ______.


The value of cot–1(–x) for all x ∈ R in terms of cot–1x is ______.


If `"sec" theta = "x" + 1/(4 "x"), "x" in "R, x" ne 0,`then the value of  `"sec" theta + "tan" theta` is ____________.


`"tan"^-1 1/3 + "tan"^-1 1/5 + "tan"^-1 1/7 + "tan"^-1 1/8 =` ____________.


`"sin"^-1 (1 - "x") - 2  "sin"^-1 "x" = pi/2`


If `3  "sin"^-1 ((2"x")/(1 + "x"^2)) - 4  "cos"^-1 ((1 - "x"^2)/(1 + "x"^2)) + 2 "tan"^-1 ((2"x")/(1 - "x"^2)) = pi/3` then x is equal to ____________.


What is the value of cos (sec–1x + cosec–1x), |x| ≥ 1


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×