Advertisements
Advertisements
प्रश्न
The value of cot–1(–x) for all x ∈ R in terms of cot–1x is ______.
उत्तर
The value of cot–1(–x) for all x ∈ R in terms of cot–1x is π – cot–1x.
Explanation:
Clearly, –x ∈ R for all x ∈ R
Let cot–1(–x) = θ, θ ∈ (0, π) ......(i)
⇒ –x = cot θ
⇒ x = – cot θ
⇒ x = cot (π – θ)
⇒ cot–1x = π – θ .......[∵ x ∈ R and π – θ ∈ (0, π) for all θ ∈ (0, π)]
⇒ θ = π – cot–1x .....(ii)
From (i) and (ii), we get
cot–1(–x) = π – cot–1x
APPEARS IN
संबंधित प्रश्न
If `sin (sin^(−1)(1/5)+cos^(−1) x)=1`, then find the value of x.
Prove that `tan^(-1)((6x-8x^3)/(1-12x^2))-tan^(-1)((4x)/(1-4x^2))=tan^(-1)2x;|2x|<1/sqrt3`
If `tan^-1(2x)+tan^-1(3x)=pi/4`, then find the value of ‘x’.
Write the function in the simplest form: `tan^(-1) 1/(sqrt(x^2 - 1)), |x| > 1`
sin (tan–1 x), | x| < 1 is equal to ______.
Solve `tan^(-1) - tan^(-1) (x - y)/(x+y)` is equal to
(A) `pi/2`
(B). `pi/3`
(C) `pi/4`
(D) `(-3pi)/4`
If y = `(x sin^-1 x)/sqrt(1 -x^2)`, prove that: `(1 - x^2)dy/dx = x + y/x`
Find: ∫ sin x · log cos x dx
Find the value, if it exists. If not, give the reason for non-existence
`sin^-1 (cos pi)`
Find the value of the expression in terms of x, with the help of a reference triangle
cos (tan–1 (3x – 1))
Prove that `tan^-1x + tan^-1 (2x)/(1 - x^2) = tan^-1 (3x - x^3)/(1 - 3x^2), |x| < 1/sqrt(3)`
Choose the correct alternative:
`tan^-1 (1/4) + tan^-1 (2/9)` is equal to
Choose the correct alternative:
If |x| ≤ 1, then `2tan^-1x - sin^-1 (2x)/(1 + x^2)` is equal to
Prove that cot–17 + cot–18 + cot–118 = cot–13
Solve the equation `sin^-1 6x + sin^-1 6sqrt(3)x = - pi/2`
Evaluate `cos[cos^-1 ((-sqrt(3))/2) + pi/6]`
Show that `tan(1/2 sin^-1 3/4) = (4 - sqrt(7))/3` and justify why the other value `(4 + sqrt(7))/3` is ignored?
The number of real solutions of the equation `sqrt(1 + cos 2x) = sqrt(2) cos^-1 (cos x)` in `[pi/2, pi]` is ______.
If y = `2 tan^-1x + sin^-1 ((2x)/(1 + x^2))` for all x, then ______ < y < ______.
`"cot" (pi/4 - 2 "cot"^-1 3) =` ____________.
`"cos" (2 "tan"^-1 1/7) - "sin" (4 "sin"^-1 1/3) =` ____________.
If `"tan"^-1 (("x" - 1)/("x" + 2)) + "tan"^-1 (("x" + 1)/("x" + 2)) = pi/4,` then x is equal to ____________.
The value of cot-1 9 + cosec-1 `(sqrt41/4)` is given by ____________.
Simplest form of `tan^-1 ((sqrt(1 + cos "x") + sqrt(1 - cos "x"))/(sqrt(1 + cos "x") - sqrt(1 - cos "x")))`, `π < "x" < (3π)/2` is:
The value of `"tan"^-1 (3/4) + "tan"^-1 (1/7)` is ____________.
`"tan"^-1 1 + "cos"^-1 ((-1)/2) + "sin"^-1 ((-1)/2)`
What is the simplest form of `tan^-1 sqrt(1 - x^2 - 1)/x, x ≠ 0`
The set of all values of k for which (tan–1 x)3 + (cot–1 x)3 = kπ3, x ∈ R, is the internal ______.
If `cos^-1(2/(3x)) + cos^-1(3/(4x)) = π/2(x > 3/4)`, then x is equal to ______.