मराठी

The value of cot–1(–x) for all x ∈ R in terms of cot–1x is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

The value of cot–1(–x) for all x ∈ R in terms of cot–1x is ______.

रिकाम्या जागा भरा

उत्तर

The value of cot–1(–x) for all x ∈ R in terms of cot–1x is π – cot–1x.

Explanation:

Clearly, –x ∈ R for all  x ∈ R

Let cot–1(–x) = θ, θ ∈ (0, π)   ......(i)

⇒  –x = cot θ

⇒ x = – cot θ

⇒ x = cot (π – θ)

⇒ cot–1x = π – θ  .......[∵ x ∈ R and π – θ ∈ (0, π) for all θ ∈ (0, π)]

⇒ θ = π – cot–1x   .....(ii)

From (i) and (ii), we get

cot–1(–x) = π – cot–1x

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Inverse Trigonometric Functions - Exercise [पृष्ठ ४०]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 2 Inverse Trigonometric Functions
Exercise | Q 48 | पृष्ठ ४०

संबंधित प्रश्‍न

 

If `sin (sin^(−1)(1/5)+cos^(−1) x)=1`, then find the value of x.

 

 
 
 

Prove that `tan^(-1)((6x-8x^3)/(1-12x^2))-tan^(-1)((4x)/(1-4x^2))=tan^(-1)2x;|2x|<1/sqrt3`

 
 
 

If `tan^-1(2x)+tan^-1(3x)=pi/4`, then find the value of ‘x’.


Write the function in the simplest form: `tan^(-1)  1/(sqrt(x^2 - 1)), |x| > 1`


sin (tan–1 x), | x| < 1 is equal to ______.


Solve  `tan^(-1) -  tan^(-1)  (x - y)/(x+y)` is equal to

(A) `pi/2`

(B). `pi/3` 

(C) `pi/4` 

(D) `(-3pi)/4`


If y = `(x sin^-1 x)/sqrt(1 -x^2)`, prove that: `(1 - x^2)dy/dx = x + y/x`


Find: ∫ sin x · log cos x dx


Find the value, if it exists. If not, give the reason for non-existence

`sin^-1 (cos pi)`


Find the value of the expression in terms of x, with the help of a reference triangle

cos (tan–1 (3x – 1))


Prove that `tan^-1x + tan^-1  (2x)/(1 - x^2) = tan^-1  (3x - x^3)/(1 - 3x^2), |x| < 1/sqrt(3)`


Choose the correct alternative:

`tan^-1 (1/4) + tan^-1 (2/9)` is equal to


Choose the correct alternative:

If |x| ≤ 1, then `2tan^-1x - sin^-1  (2x)/(1 + x^2)` is equal to


Prove that cot–17 + cot–18 + cot–118 = cot–13


Solve the equation `sin^-1 6x + sin^-1 6sqrt(3)x = - pi/2`


Evaluate `cos[cos^-1 ((-sqrt(3))/2) + pi/6]`


Show that `tan(1/2 sin^-1  3/4) = (4 - sqrt(7))/3` and justify why the other value `(4 + sqrt(7))/3` is ignored?


The number of real solutions of the equation `sqrt(1 + cos 2x) = sqrt(2) cos^-1 (cos x)` in `[pi/2, pi]` is ______.


If y = `2 tan^-1x + sin^-1 ((2x)/(1 + x^2))` for all x, then ______ < y < ______.


`"cot" (pi/4 - 2  "cot"^-1  3) =` ____________.


`"cos" (2  "tan"^-1 1/7) - "sin" (4  "sin"^-1 1/3) =` ____________.


If `"tan"^-1 (("x" - 1)/("x" + 2)) + "tan"^-1 (("x" + 1)/("x" + 2)) = pi/4,` then x is equal to ____________.


The value of cot-1 9 + cosec-1 `(sqrt41/4)` is given by ____________.


Simplest form of `tan^-1 ((sqrt(1 + cos "x") + sqrt(1 - cos "x"))/(sqrt(1 + cos "x") - sqrt(1 - cos "x")))`, `π < "x" < (3π)/2` is:


The value of `"tan"^-1 (3/4) + "tan"^-1 (1/7)` is ____________.


`"tan"^-1 1 + "cos"^-1 ((-1)/2) + "sin"^-1 ((-1)/2)`


What is the simplest form of `tan^-1  sqrt(1 - x^2 - 1)/x, x ≠ 0`


The set of all values of k for which (tan–1 x)3 + (cot–1 x)3 = kπ3, x ∈ R, is the internal ______.


If `cos^-1(2/(3x)) + cos^-1(3/(4x)) = π/2(x > 3/4)`, then x is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×