मराठी

All trigonometric functions have inverse over their respective domains. - Mathematics

Advertisements
Advertisements

प्रश्न

All trigonometric functions have inverse over their respective domains.

पर्याय

  • True

  • False

MCQ
चूक किंवा बरोबर

उत्तर

This statement is False.

Explanation:

We know that all inverse trigonometric functions are restricted over their domains.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Inverse Trigonometric Functions - Exercise [पृष्ठ ४०]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 2 Inverse Trigonometric Functions
Exercise | Q 49 | पृष्ठ ४०

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

Find the principal values of `sin^(-1) (-1/2)`


Find the principal value of cosec−1 (2)


Find the principal value of  `cos^(-1) (-1/2)`


Find the principal value of tan−1 (−1)


Prove that:

`tan^-1  ((sqrt(1 + x) - sqrt(1 - x))/(sqrt(1 + x) + sqrt(1 - x))) = pi/4 - 1/2 cos^-1 x`, for `- 1/sqrt2 <= x <= 1`

[Hint: put x =  cos 2θ]


Find the principal value of the following: cosec- 1(2)


Find the principal value of the following: sin-1 `(1/sqrt(2))`


Evaluate the following:

`"cosec"^-1(-sqrt(2)) + cot^-1(sqrt(3))`


Prove the following:

`cos^-1(3/5) + cos^-1(4/5) = pi/(2)`


Prove the following:

`tan^-1(1/2) + tan^-1(1/3) = pi/(4)`


Prove that `2 tan^-1 (3/4) = tan^-1(24/7)`


Prove that cot−1(7) + 2 cot−1(3) = `pi/4`


Find the principal value of `cos^-1  sqrt(3)/2`


Find the principal value of cosec–1(– 1)


If `sin^-1  3/5 + cos^-1  12/13 = sin^-1 P`, then P is equal to ______ 


`tan[2tan^-1 (1/3) - pi/4]` = ______.


`cos(2sin^-1  3/4+cos^-1  3/4)=` ______.


If `3sin^-1((2x)/(1 + x^2)) - 4cos^-1((1 - x^2)/(1 + x^2)) + 2tan^-1((2x)/(1 - x^2)) = pi/3`, then x is equal to ______ 


The domain of the function y = sin–1 (– x2) is ______.


Show that `cos(2tan^-1  1/7) = sin(4tan^-1  1/3)`


`"cos"^-1 ["cos" (2  "cot"^-1 (sqrt2 - 1))] =` ____________.


`"cos" ["tan"^-1 {"sin" ("cot"^-1 "x")}]` is equal to ____________.


The number of solutions of sin–1x + sin–1(1 – x) = cos–1x is


If `(-1)/sqrt(2) ≤ x ≤ 1/sqrt(2)` then `sin^-1 (2xsqrt(1 - x^2))` is equal to


Domain and Rariges of cos–1 is:-


Find the principal value of `cot^-1 ((-1)/sqrt(3))`


If f'(x) = x–1, then find f(x)


If sin–1a + sin–1b + sin–1c = π, then find the value of `asqrt(1 - a^2) + bsqrt(1 - b^2) + csqrt(1 - c^2)`.


sin [cot–1 (cos (tan–1 x))] = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×