Advertisements
Advertisements
प्रश्न
Find the principal value of the following: cosec- 1(2)
उत्तर
The principal value branch of cosec-1x is `[- pi/2, pi/2] - {0}`.
Let cosec-1(2) = α, `"where" (-pi)/(2) ≤ α ≤ pi/(2)`, α ≠ 0.
∴ cosec α = 2 = `"cosec" pi/(6)`
∴ α = `pi/(6) ...[ ∵ - pi/2 ≤ pi/6 ≤ pi/2 ]`
∴ the principal value of cosec-1(2) is `pi/(6)`.
APPEARS IN
संबंधित प्रश्न
If `tan^-1((x-1)/(x-2))+cot^-1((x+2)/(x+1))=pi/4; `
Show that:
`cos^(-1)(4/5)+cos^(-1)(12/13)=cos^(-1)(33/65)`
Find the principal value of cosec−1 (2)
Find the principal value of `cosec^(-1)(-sqrt2)`
`sin^-1 1/2-2sin^-1 1/sqrt2`
`sin^-1{cos(sin^-1 sqrt3/2)}`
If `sin^-1 x + sin^-1 y+sin^-1 z+sin^-1 t=2pi` , then find the value of x2 + y2 + z2 + t2
Evaluate the following:
`tan^-1(tan (5pi)/6)+cos^-1{cos((13pi)/6)}`
Find the set of values of `cosec^-1(sqrt3/2)`
In ΔABC, if a = 18, b = 24, c = 30 then find the values of cosA
In ΔABC, if a = 18, b = 24, c = 30 then find the values of cos `A/2`
In ΔABC prove that `(b + c - a) tan "A"/(2) = (c + a - b)tan "B"/(2) = (a + b - c)tan "C"/(2)`.
In ΔABC prove that `sin "A"/(2). sin "B"/(2). sin "C"/(2) = ["A(ΔABC)"]^2/"abcs"`
Find the principal value of the following: `sin^-1 (1/2)`
Find the principal value of the following: sin-1 `(1/sqrt(2))`
Evaluate the following:
`tan^-1(1) + cos^-1(1/2) + sin^-1(1/2)`
Prove the following:
`2tan^-1(1/3) = tan^-1(3/4)`
Find the principal solutions of the following equation:
sin 2θ = `− 1/(sqrt2)`
The principal value of cos−1`(-1/2)` is ______
Evaluate cot(tan−1(2x) + cot−1(2x))
Find the value of `cos^-1 (1/2) + tan^-1 (1/sqrt(3))`
Evaluate `cos[pi/6 + cos^-1 (- sqrt(3)/2)]`
Find the principal value of the following:
tan-1 (-1)
Find the principal value of the following:
cosec-1 (2)
Prove that:
2 tan-1 (x) = `sin^-1 ((2x)/(1 + x^2))`
Prove that:
`tan^-1 (4/3) + tan^-1 (1/7) = pi/4`
Solve: tan-1 (x + 1) + tan-1 (x – 1) = `tan^-1 (4/7)`
Show that `sin^-1 (- 3/5) - sin^-1 (- 8/17) = cos^-1 (84/85)`
Express `tan^-1 ((cos x - sin x)/(cos x + sin x))`, 0 < x < π in the simplest form.
Find the principal value of `sin^-1 1/sqrt(2)`
sin[3 sin-1 (0.4)] = ______.
The principal value of `tan^{-1(sqrt3)}` is ______
If 2tan-1 (cos x) = tan-1 (cosec2 x), then x = ______.
The principal value of `sin^-1 (sin (3pi)/4)` is ______.
The value of cot (- 1110°) is equal to ______.
In a triangle ABC, ∠C = 90°, then the value of `tan^-1 ("a"/("b + c")) + tan^-1("b"/("c + a"))` is ______.
`cos(2sin^-1 3/4+cos^-1 3/4)=` ______.
If `tan^-1x + tan^-1y = (4pi)/5`, then `cot^-1x + cot^-1y` equals ______.
The value of `sin^-1(cos (53pi)/5)` is ______
The equation tan–1x – cot–1x = `(1/sqrt(3))` has ______.
Show that `cos(2tan^-1 1/7) = sin(4tan^-1 1/3)`
If tan-1 3 + tan-1 x = tan-1 8, then x = ____________.
`"sin"^-1 (-1/2)`
If `"x" in (- pi/2, pi/2), "then the value of tan"^-1 ("tan x"/4) + "tan"^-1 ((3 "sin" 2 "x")/(5 + 3 "cos" 2 "x"))` is ____________.
`"cos" ["tan"^-1 {"sin" ("cot"^-1 "x")}]` is equal to ____________.
`2"tan"^-1 ("cos x") = "tan"^-1 (2 "cosec x")`
If |Z1| = |Z2| and arg (Z1) + arg (Z2) = 0, then
sin 6θ + sin 4θ + sin 2θ = 0, then θ =
Domain and Rariges of cos–1 is:-
Find the principal value of `tan^-1 (sqrt(3))`
`sin(tan^-1x), |x| < 1` is equal to
what is the value of `cos^-1 (cos (13pi)/6)`
Value of `sin(pi/3 - sin^1 (- 1/2))` is equal to
If f(x) = x5 + 2x – 3, then (f–1)1 (–3) = ______.
If f'(x) = x–1, then find f(x)
Let x = sin–1(sin8) + cos–1(cos11) + tan–1(tan7), and x = k(π – 2.4) for an integer k, then the value of k is ______.
cos–1(cos10) is equal to ______.
Number of values of x which lie in [0, 2π] and satisfy the equation
`(cos x/4 - 2sinx) sinx + (1 + sin x/4 - 2cosx)cosx` = 0
If ax + b (sec (tan–1 x)) = c and ay + b (sec.(tan–1 y)) = c, then `(x + y)/(1 - xy)` = ______.
If x ∈ R – {0}, then `tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/(sqrt(1 + x^2) - sqrt(1 - x^2)))`
sin [cot–1 (cos (tan–1 x))] = ______.
If y = `tan^-1 (sqrt(1 + x^2) - sqrt(1 - x^2))/(sqrt(1 + x^2) + sqrt(1 - x^2))`, then `dy/dx` is equal to ______.
Find the value of `cos(x/2)`, if tan x = `5/12` and x lies in third quadrant.
`sin[π/3 + sin^-1 (1/2)]` is equal to ______.
If sin–1x – cos–1x = `π/6`, then x = ______.