Advertisements
Advertisements
प्रश्न
`sin[π/3 + sin^-1 (1/2)]` is equal to ______.
पर्याय
1
`1/2`
`1/3`
`1/4`
उत्तर
`sin[π/3 + sin^-1 (1/2)]` is equal to 1.
Explanation:
`sin(π/3 + π/6) = sin (π/2)` = 1.
संबंधित प्रश्न
Find the principal value of `cos^(-1) (-1/2)`
Find the principal value of `cos^(-1) (-1/sqrt2)`
Find the principal value of `cosec^(-1)(-sqrt2)`
Prove that:
`tan^-1 ((sqrt(1 + x) - sqrt(1 - x))/(sqrt(1 + x) + sqrt(1 - x))) = pi/4 - 1/2 cos^-1 x`, for `- 1/sqrt2 <= x <= 1`
[Hint: put x = cos 2θ]
Find the domain of the following function:
`f(x)=sin^-1x^2`
If `sin^-1 x + sin^-1 y+sin^-1 z+sin^-1 t=2pi` , then find the value of x2 + y2 + z2 + t2
Evaluate the following:
`tan^-1 sqrt(3) - sec^-1 (-2)`
Prove the following:
`tan^-1(1/2) + tan^-1(1/3) = pi/(4)`
In ΔABC, prove the following:
`(cos A)/a + (cos B)/b + (cos C)/c = (a^2 + b^2 + c^2)/(2abc)`
The principal value of sin−1`(1/2)` is ______
Prove that `2 tan^-1 (3/4) = tan^-1(24/7)`
`sin^-1x + sin^-1 1/x + cos^-1x + cos^-1 1/x` = ______
lf `sqrt3costheta + sintheta = sqrt2`, then the general value of θ is ______
If `sin^-1(x/13) + cosec^-1(13/12) = pi/2`, then the value of x is ______
If `sin^-1 3/5 + cos^-1 12/13 = sin^-1 P`, then P is equal to ______
`tan[2tan^-1 (1/3) - pi/4]` = ______.
`cos(2sin^-1 3/4+cos^-1 3/4)=` ______.
`(sin^-1(-1/2) + tan^-1(-1/sqrt(3)))/(sec^-1 (-2/sqrt(3)) + cos^-1(1/sqrt(2))` = ______.
The value of `cos(pi/4 + x) - cos(pi/4 - x)` is ______.
The value of `sin^-1[cos(pi/3)] + sin^-1[tan((5pi)/4)]` is ______.
Prove that `cot(pi/4 - 2cot^-1 3)` = 7
If sin-1 x – cos-1 x `= pi/6,` then x = ____________.
`"cos"^-1 1/2 + 2 "sin"^-1 1/2` is equal to ____________.
If tan-1 (x – 1) + tan-1 x + tan-1 (x + 1) = tan-1 3x, then the values of x are ____________.
`"cos"^-1 ["cos" (2 "cot"^-1 (sqrt2 - 1))] =` ____________.
If sin–1a + sin–1b + sin–1c = π, then find the value of `asqrt(1 - a^2) + bsqrt(1 - b^2) + csqrt(1 - c^2)`.
The value of `cos^-1(cos(π/2)) + cos^-1(sin((2π)/2))` is ______.
If y = `tan^-1 (sqrt(1 + x^2) - sqrt(1 - x^2))/(sqrt(1 + x^2) + sqrt(1 - x^2))`, then `dy/dx` is equal to ______.