Advertisements
Advertisements
प्रश्न
In ΔABC, prove the following:
`(cos A)/a + (cos B)/b + (cos C)/c = (a^2 + b^2 + c^2)/(2abc)`
उत्तर १
LHS = `(cos A)/a + (cos B)/b + (cos C)/c`
`= ((("b"^2 + "c"^2 - "a"^2)/"2bc"))/"a" + ((("c"^2 + "a"^2 - "b"^2)/"2ca"))/"b" + ((("a"^2 + "b"^2 - "c"^2)/"2ab"))/"c"`
`= ("b"^2 + "c"^2 - "a"^2)/"2abc" + ("c"^2 + "a"^2 - "b"^2)/"2abc" + ("a"^2 + "b"^2 - "c"^2)/"2abc"`
`= ("b"^2 + "c"^2 - "a"^2 + "c"^2 + "a"^2 - "b"^2 + "a"^2 + "b"^2 - "c"^2)/"2abc"`
`= ("a"^2 + "b"^2 + "c"^2)/"2abc"`
= RHS
उत्तर २
LHS = `(cos A)/a + (cos B)/b + (cos C)/c`
= `(b cos A + a cos B)/(ab) + (cos C)/c`
= `c/(ab) + (cos C)/c` ...(By projection rule)
= `c/(ab) + (a^2 + b^2 - c^2)/(2 abc)` ...(By cosine rule)
= `(2c^2 + a^2 + b^2 - c^2)/(2 abc)`
= `(a^2 + b^2 + c^2)/(2 abc)` = R.H.S.
संबंधित प्रश्न
Find the principal value of cosec−1 (2)
Find the principal value of `cos^(-1) (-1/sqrt2)`
Find the principal value of `cosec^(-1)(-sqrt2)`
Find the value of the following:
`tan^(-1)(1) + cos^(-1) (-1/2) + sin^(-1) (-1/2)`
Find the value of the following:
`cos^(-1) (1/2) + 2 sin^(-1)(1/2)`
`tan^(-1) sqrt3 - sec^(-1)(-2)` is equal to ______.
Find the value of the following:
`tan^(-1) (tan (7x)/6)`
Prove that:
`tan^-1 ((sqrt(1 + x) - sqrt(1 - x))/(sqrt(1 + x) + sqrt(1 - x))) = pi/4 - 1/2 cos^-1 x`, for `- 1/sqrt2 <= x <= 1`
[Hint: put x = cos 2θ]
Find the domain of the following function:
`f(x)=sin^-1x+sin^-1 2x`
Evaluate the following:
`tan^-1 1+cos^-1 (-1/2)+sin^-1(-1/2)`
Evaluate the following:
`tan^-1(-1/sqrt3)+tan^-1(-sqrt3)+tan^-1(sin(-pi/2))`
Evaluate the following:
`tan^-1(tan (5pi)/6)+cos^-1{cos((13pi)/6)}`
Find the set of values of `cosec^-1(sqrt3/2)`
Evaluate the following:
`\text(cosec)^-1(-2/sqrt3)+2cot^-1(-1)`
Prove that:
cot−1 7 + cot−1 8 + cot−1 18 = cot−1 3 .
Evaluate: tan `[ 2 tan^-1 (1)/(2) – cot^-1 3]`
In ΔABC prove that `sin "A"/(2). sin "B"/(2). sin "C"/(2) = ["A(ΔABC)"]^2/"abcs"`
Find the principal value of the following: `sin^-1 (1/2)`
Find the principal value of the following: cosec- 1(2)
Find the principal value of the following: cos- 1`(-1/2)`
Evaluate the following:
`cos^-1(1/2) + 2sin^-1(1/2)`
Evaluate the following:
`"cosec"^-1(-sqrt(2)) + cot^-1(sqrt(3))`
Prove the following:
`cos^-1(3/5) + cos^-1(4/5) = pi/(2)`
Prove the following:
`2tan^-1(1/3) = tan^-1(3/4)`
Prove the following:
`tan^-1["cosθ + sinθ"/"cosθ - sinθ"] = pi/(4) + θ, if θ ∈ (- pi/4, pi/4)`
Find the principal solutions of the following equation:
tan 5θ = -1
Find the principal solutions of the following equation:
cot 2θ = 0.
The principal value of cos−1`(-1/2)` is ______
`tan^-1(tan (7pi)/6)` = ______
If `sin(sin^-1(1/5) + cos^-1(x))` = 1, then x = ______
Evaluate `cos[pi/6 + cos^-1 (- sqrt(3)/2)]`
Prove that cot−1(7) + 2 cot−1(3) = `pi/4`
Find the principal value of the following:
cosec-1 (2)
Find the principal value of the following:
`sec^-1 (-sqrt2)`
Prove that:
2 tan-1 (x) = `sin^-1 ((2x)/(1 + x^2))`
Show that `tan^-1 (1/2) + tan^-1 (2/11) = tan^-1 (3/4)`
Solve `tan^-1 2x + tan^-1 3x = pi/4`
Find the principal value of `cos^-1 sqrt(3)/2`
Find the principal value of cosec–1(– 1)
The value of cot `(tan^-1 2x + cot^-1 2x)` is ______
If `sin^-1(x/13) + cosec^-1(13/12) = pi/2`, then the value of x is ______
In Δ ABC, with the usual notations, if sin B sin C = `"bc"/"a"^2`, then the triangle is ______.
The value of 2 `cot^-1 1/2 - cot^-1 4/3` is ______
If `sin^-1x + cos^-1y = (3pi)/10,` then `cos^-1x + sin^-1y =` ______
`sin^2(sin^-1 1/2) + tan^2 (sec^-1 2) + cot^2(cosec^-1 4)` = ______.
The value of cot (- 1110°) is equal to ______.
`(sin^-1(-1/2) + tan^-1(-1/sqrt(3)))/(sec^-1 (-2/sqrt(3)) + cos^-1(1/sqrt(2))` = ______.
`sin{tan^-1((1 - x^2)/(2x)) + cos^-1((1 - x^2)/(1 + x^2))}` is equal to ______
If `3tan^-1x +cot^-1x = pi`, then xis equal to ______.
The domain of the function y = sin–1 (– x2) is ______.
The domain of y = cos–1(x2 – 4) is ______.
Show that `2tan^-1 (-3) = (-pi)/2 + tan^-1 ((-4)/3)`
Show that `cos(2tan^-1 1/7) = sin(4tan^-1 1/3)`
Solve the following equation `cos(tan^-1x) = sin(cot^-1 3/4)`
Prove that `tan^-1 1/4 + tan^-1 2/9 = sin^-1 1/sqrt(5)`
`"cos" 2 theta` is not equal to ____________.
`"sin"^2 25° + "sin"^2 65°` is equal to ____________.
`"sin" 265° - "cos" 265°` is ____________.
If sin-1 x – cos-1 x `= pi/6,` then x = ____________.
`"tan"^-1 (sqrt3)`
`"sin"^-1 (1/sqrt2)`
If 6sin-1 (x2 – 6x + 8.5) = `pi`, then x is equal to ____________.
`"cos"^-1 ["cos" (2 "cot"^-1 (sqrt2 - 1))] =` ____________.
Find the value of sec2 (tan-1 2) + cosec2 (cot-1 3) ____________.
If `"x" in (- pi/2, pi/2), "then the value of tan"^-1 ("tan x"/4) + "tan"^-1 ((3 "sin" 2 "x")/(5 + 3 "cos" 2 "x"))` is ____________.
`2"tan"^-1 ("cos x") = "tan"^-1 (2 "cosec x")`
`"tan"^-1 sqrt3 - "sec"^-1 (-2)` is equal to ____________.
If a = `(2sin theta)/(1 + costheta + sintheta)`, then `(1 + sintheta - costheta)/(1 + sintheta)` is
If A = `[(cosx, sinx),(-sinx, cosx)]`, then A1 A–1 is
The number of solutions of sin–1x + sin–1(1 – x) = cos–1x is
The inverse of `f(x) = sqrt(3x^2 - 4x + 5)` is
Domain and Rariges of cos–1 is:-
Values of tan–1 – sec–1(–2) is equal to
If `sin(sin^-1 1/5 + cos^-1 x) = 1`, the what will be the value of x?
Assertion (A): The domain of the function sec–12x is `(-∞, - 1/2] ∪ pi/2, ∞)`
Reason (R): sec–1(–2) = `- pi/4`
Consider f(x) = sin–1[2x] + cos–1([x] – 1) (where [.] denotes greatest integer function.) If domain of f(x) is [a, b) and the range of f(x) is {c, d} then `a + b + (2d)/c` is equal to ______. (where c < d)
Number of values of x which lie in [0, 2π] and satisfy the equation
`(cos x/4 - 2sinx) sinx + (1 + sin x/4 - 2cosx)cosx` = 0
If ax + b (sec (tan–1 x)) = c and ay + b (sec.(tan–1 y)) = c, then `(x + y)/(1 - xy)` = ______.
If tan–1 2x + tan–1 3x = `π/4`, then x = ______.
`(tan^-1 (sqrt(3)) - sec^-1(-2))/("cosec"^-1(-sqrt(2)) + cos^-1(-1/2))` is equal to ______.
sin [cot–1 (cos (tan–1 x))] = ______.
If y = `tan^-1 (sqrt(1 + x^2) - sqrt(1 - x^2))/(sqrt(1 + x^2) + sqrt(1 - x^2))`, then `dy/dx` is equal to ______.
The value of `tan(cos^-1 4/5 + tan^-1 2/3)` is ______.
If tan 4θ = `tan(2/θ)`, then the general value of θ is ______.