मराठी

Find the Domain of the Following Function: `F(X)=Sin^-1x+Sin^-1 2x` - Mathematics

Advertisements
Advertisements

प्रश्न

Find the domain of the following function:

`f(x)=sin^-1x+sin^-1 2x`

उत्तर

Let f(x) = g(x) + h(x), where g(x)=cotx and h(x)=cot1x
Therefore, the domain of f(x) is given by the intersection of the domain of g(x) and h(x)
The domain of g(x) is [−1, 1]
The domain of h(x) is `[-1/2, 1/2]`
Therfore, the intersection of g(x) and h(x) is  `[-1/2, 1/2]`
Hence, the domain is `[-1/2, 1/2]`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Inverse Trigonometric Functions - Exercise 4.01 [पृष्ठ ७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 4 Inverse Trigonometric Functions
Exercise 4.01 | Q 3.4 | पृष्ठ ७

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

Show that `2sin^-1(3/5) = tan^-1(24/7)`


Find the principal value of cosec−1 (2)


Find the principal value of `tan^(-1) (-sqrt3)`


Find the principal value of `sin^-1(1/sqrt2)`


Find the domain of the following function:

`f(x)=sin^-1x^2`

 


Evaluate the following:

`cot^-1  1/sqrt3-\text(cosec)^-1(-2)+sec^-1(2/sqrt3)`


In ΔABC, if a = 18, b = 24, c = 30 then find the values of sinA


Find the principal value of the following: cosec- 1(2)


Find the principal value of the following: tan-1(– 1)


Prove the following:

`tan^-1["cosθ + sinθ"/"cosθ - sinθ"] = pi/(4) + θ, if θ ∈ (- pi/4, pi/4)`


Prove the following:

`tan^-1[sqrt((1 - cosθ)/(1 + cosθ))] = θ/(2)`, if θ ∈ (– π, π).


sin−1x − cos−1x = `pi/6`, then x = ______


Evaluate:

`sin[cos^-1 (3/5)]`


Evaluate `cos[pi/6 + cos^-1 (- sqrt(3)/2)]`


Prove that `2 tan^-1 (1/8) + tan^-1 (1/7) + 2tan^-1 (1/5) = pi/4`


Show that `tan^-1 (1/2) + tan^-1 (2/11) = tan^-1 (3/4)`


Prove that `tan^-1 (m/n) - tan^-1 ((m - n)/(m + n)) = pi/4`


Express `tan^-1 [(cos x)/(1 - sin x)], - pi/2 < x < (3pi)/2` in the simplest form.


lf `sqrt3costheta + sintheta = sqrt2`, then the general value of θ is ______ 


The principle solutions of equation tan θ = -1 are ______ 


If `sin^-1x + cos^-1y = (3pi)/10,` then `cos^-1x + sin^-1y =` ______ 


If sin `(sin^-1  1/3 + cos^-1 x) = 1`, then the value of x is ______.


`cos(2sin^-1  3/4+cos^-1  3/4)=` ______.


The value of `sin^-1(cos  (53pi)/5)` is ______ 


Show that `cos(2tan^-1  1/7) = sin(4tan^-1  1/3)`


All trigonometric functions have inverse over their respective domains.


`"sin"^2 25° +  "sin"^2 65°` is equal to ____________.


If `"x + y" = "x"/4` then (1+ tanx)(1 + tany) is equal to ____________.


Find the value of sec2 (tan-1 2) + cosec2 (cot-1 3) ____________.


If `"cot"^-1 (sqrt"cos" alpha) - "tan"^-1 (sqrt "cos" alpha) = "x",` then sinx is equal to ____________.


Value of `sin(pi/3 - sin^1 (- 1/2))` is equal to


Consider f(x) = sin–1[2x] + cos–1([x] – 1) (where [.] denotes greatest integer function.) If domain of f(x) is [a, b) and the range of f(x) is {c, d} then `a + b + (2d)/c` is equal to ______. (where c < d) 


`cot^-1(sqrt(cos α)) - tan^-1 (sqrt(cos α))` = x, then sin x = ______.


If y = `tan^-1  (sqrt(1 + x^2) - sqrt(1 - x^2))/(sqrt(1 + x^2) + sqrt(1 - x^2))`, then `dy/dx` is equal to ______.


If sin–1x – cos–1x = `π/6`, then x = ______.


Prove that:

tan–1x + tan–1y = `π + tan^-1((x + y)/(1 - xy))`, provided x > 0, y > 0, xy > 1


The value of `tan(cos^-1  4/5 + tan^-1  2/3)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×