Advertisements
Advertisements
प्रश्न
Prove that `2 tan^-1 (1/8) + tan^-1 (1/7) + 2tan^-1 (1/5) = pi/4`
उत्तर
L.H.S. = `2 tan^-1 (1/8) + tan^-1 (1/7) + 2 tan^-1 (1/5)`
= `2[tan^-1 (1/8) + tan^-1 (1/5)] + tan^-1 (1/7)`
= `2[tan^-1 ((1/8 + 1/5)/(1 - 1/8 xx 1/5))] + tan^-1 (1/7)`
= `2[tan^-1 ((13/40)/(39/40))] + tan^-1 (1/7)`
= `2tan^-1 (1/3) + tan^-1 (1/7)`
= `tan^-1 (1/3) + tan^-1 (1/3) + tan^-1 (1/7)`
= `tan^-1 ((1/3 + 1/3)/(1 - 1/3 xx 1/3)) + tan^-1 (1/7)`
= `tan^-1 ((2/3)/(8/9)) + tan^-1 (1/7)`
= `tan^-1 (3/4) + tan^-1 (1/7)`
= `tan^-1 ((3/4 + 1/7)/(1 - 3/4 xx 1/7))`
= `tan^-1 ((25/28)/(25/28))`
= `tan^-1 (1)`
= `pi/4`
APPEARS IN
संबंधित प्रश्न
If `sin^-1(1-x) -2sin^-1x = pi/2` then x is
- -1/2
- 1
- 0
- 1/2
Show that `2sin^-1(3/5) = tan^-1(24/7)`
Show that:
`cos^(-1)(4/5)+cos^(-1)(12/13)=cos^(-1)(33/65)`
Find the principal value of tan−1 (−1)
Find the value of the following:
`tan^(-1) (tan (7x)/6)`
Find the principal value of `sin^-1(1/sqrt2)`
Find the domain of the following function:
`f(x)sin^-1sqrt(x^2-1)`
Find the domain of the following function:
`f(x)=sin^-1x+sin^-1 2x`
Evaluate the following:
`tan^-1 1+cos^-1 (-1/2)+sin^-1(-1/2)`
Evaluate the following:
`tan^-1(-1/sqrt3)+tan^-1(-sqrt3)+tan^-1(sin(-pi/2))`
Evaluate the following:
`tan^-1(tan (5pi)/6)+cos^-1{cos((13pi)/6)}`
Evaluate: tan `[ 2 tan^-1 (1)/(2) – cot^-1 3]`
In ΔABC, if a = 18, b = 24, c = 30 then find the values of tan `A/2`
In ΔABC, if a = 18, b = 24, c = 30 then find the values of A(ΔABC)
Find the principal value of the following: sin-1 `(1/sqrt(2))`
Find the principal value of the following: cos- 1`(-1/2)`
Prove the following:
`sin^-1(1/sqrt(2)) -3sin^-1(sqrt(3)/2) = -(3π)/(4)`
Prove the following:
`sin^-1(-1/2) + cos^-1(-sqrt(3)/2) = cos^-1(-1/2)`
Prove the following:
`tan^-1[sqrt((1 - cosθ)/(1 + cosθ))] = θ/(2)`, if θ ∈ (– π, π).
Find the principal solutions of the following equation:
cot 2θ = 0.
The principal value of cos−1`(-1/2)` is ______
`tan^-1(tan (7pi)/6)` = ______
Evaluate cot(tan−1(2x) + cot−1(2x))
Evaluate `cos[pi/6 + cos^-1 (- sqrt(3)/2)]`
Prove that cot−1(7) + 2 cot−1(3) = `pi/4`
Find the principal value of the following:
`sin^-1 (- 1/2)`
Prove that:
2 tan-1 (x) = `sin^-1 ((2x)/(1 + x^2))`
Show that `tan^-1 (1/2) + tan^-1 (2/11) = tan^-1 (3/4)`
Evaluate:
`cos[tan^-1 (3/4)]`
Evaluate: sin`[1/2 cos^-1 (4/5)]`
Find the principal value of `sin^-1 1/sqrt(2)`
Find the principal value of `cos^-1 sqrt(3)/2`
Find the principal value of cosec–1(– 1)
Find the principal value of `sec^-1 (- sqrt(2))`
Find the principal value of `tan^-1 (sqrt(3))`
The principal value of `tan^{-1(sqrt3)}` is ______
If 2tan-1 (cos x) = tan-1 (cosec2 x), then x = ______.
The principal value of `sin^-1 (sin (3pi)/4)` is ______.
If sin `(sin^-1 1/3 + cos^-1 x) = 1`, then the value of x is ______.
`(sin^-1(-1/2) + tan^-1(-1/sqrt(3)))/(sec^-1 (-2/sqrt(3)) + cos^-1(1/sqrt(2))` = ______.
`sin{tan^-1((1 - x^2)/(2x)) + cos^-1((1 - x^2)/(1 + x^2))}` is equal to ______
The domain of the function y = sin–1 (– x2) is ______.
Solve the following equation `cos(tan^-1x) = sin(cot^-1 3/4)`
Show that `sin^-1 5/13 + cos^-1 3/5 = tan^-1 63/16`
Prove that `tan^-1 1/4 + tan^-1 2/9 = sin^-1 1/sqrt(5)`
`"cos" 2 theta` is not equal to ____________.
When `"x" = "x"/2`, then tan x is ____________.
`"sin" 265° - "cos" 265°` is ____________.
If `"sin"^-1("x"^2 - 7"x" + 12) = "n"pi, AA "n" in "I"`, then x = ____________.
If `"cos"^-1 "x + sin"^-1 "x" = pi`, then the value of x is ____________.
If sin-1 x – cos-1 x `= pi/6,` then x = ____________.
`"sin"^-1 (-1/2)`
`"tan"^-1 (sqrt3)`
The value of `"cos"^-1 ("cos" ((33 pi)/5))` is ____________.
Find the value of sec2 (tan-1 2) + cosec2 (cot-1 3) ____________.
`2"tan"^-1 ("cos x") = "tan"^-1 (2 "cosec x")`
If `"cot"^-1 (sqrt"cos" alpha) - "tan"^-1 (sqrt "cos" alpha) = "x",` then sinx is equal to ____________.
`"tan"^-1 sqrt3 - "sec"^-1 (-2)` is equal to ____________.
If a = `(2sin theta)/(1 + costheta + sintheta)`, then `(1 + sintheta - costheta)/(1 + sintheta)` is
If A = `[(cosx, sinx),(-sinx, cosx)]`, then A1 A–1 is
Which of the following functions is inverse of itself?
If `sqrt(2)` sec θ + tan θ = 1, then the general value of θ is
The inverse of `f(x) = sqrt(3x^2 - 4x + 5)` is
Domain and Rariges of cos–1 is:-
What is the principal value of cosec–1(2).
`2tan^-1 (cos x) = tan^-1 (2"cosec" x)`, then 'x' will be equal to
what is the value of `cos^-1 (cos (13pi)/6)`
Assertion (A): The domain of the function sec–12x is `(-∞, - 1/2] ∪ pi/2, ∞)`
Reason (R): sec–1(–2) = `- pi/4`
cos–1(cos10) is equal to ______.
If ax + b (sec (tan–1 x)) = c and ay + b (sec.(tan–1 y)) = c, then `(x + y)/(1 - xy)` = ______.
The value of cos (2cos–1 x + sin–1 x) at x = `1/5` is ______.
Derivative of `tan^-1(x/sqrt(1 - x^2))` with respect sin–1(3x – 4x3) is ______.
If y = `tan^-1 (sqrt(1 + x^2) - sqrt(1 - x^2))/(sqrt(1 + x^2) + sqrt(1 - x^2))`, then `dy/dx` is equal to ______.
The value of `tan(cos^-1 4/5 + tan^-1 2/3)` is ______.
Find the value of `sin(2cos^-1 sqrt(5)/3)`.
Find the value of `tan^-1(x/y) + tan^-1((y - x)/(y + x))`