Advertisements
Advertisements
प्रश्न
Find the value of `tan^-1(x/y) + tan^-1((y - x)/(y + x))`
उत्तर
`tan^-1(x/y) + tan^-1((y - x)/(y + x))`
= `tan^-1(x/y) + tan^-1((1 - x/y)/(1 + x/y))`
= `tan^-1(x/y) + tan^-1(1) - tan^-1(x/y)`
= `tan^-1(1)`
= `π/4`
APPEARS IN
संबंधित प्रश्न
If `sin^-1(1-x) -2sin^-1x = pi/2` then x is
- -1/2
- 1
- 0
- 1/2
Find the principal values of `sin^(-1) (-1/2)`
Find the principal value of cosec−1 (2)
`sin^-1{cos(sin^-1 sqrt3/2)}`
Evaluate the following:
`tan^-1(-1/sqrt3)+tan^-1(-sqrt3)+tan^-1(sin(-pi/2))`
In ΔABC prove that `(b + c - a) tan "A"/(2) = (c + a - b)tan "B"/(2) = (a + b - c)tan "C"/(2)`.
Evaluate the following:
`"cosec"^-1(-sqrt(2)) + cot^-1(sqrt(3))`
Prove the following:
`tan^-1(1/2) + tan^-1(1/3) = pi/(4)`
Prove the following:
`2tan^-1(1/3) = tan^-1(3/4)`
Find the principal solutions of the following equation:
sin 2θ = `− 1/(sqrt2)`
Find the principal value of `sec^-1 (- sqrt(2))`
In Δ ABC, with the usual notations, if sin B sin C = `"bc"/"a"^2`, then the triangle is ______.
If `sin^-1 3/5 + cos^-1 12/13 = sin^-1 P`, then P is equal to ______
`sin^2(sin^-1 1/2) + tan^2 (sec^-1 2) + cot^2(cosec^-1 4)` = ______.
All trigonometric functions have inverse over their respective domains.
If `"x + y" = "x"/4` then (1+ tanx)(1 + tany) is equal to ____________.
`"sin" 265° - "cos" 265°` is ____________.
If `"sin"^-1("x"^2 - 7"x" + 12) = "n"pi, AA "n" in "I"`, then x = ____________.
Which of the following functions is inverse of itself?
What is the principal value of cosec–1(2).
`2tan^-1 (cos x) = tan^-1 (2"cosec" x)`, then 'x' will be equal to
If f'(x) = x–1, then find f(x)
`lim_(n→∞)tan{sum_(r = 1)^n tan^-1(1/(1 + r + r^2))}` is equal to ______.
Let x = sin–1(sin8) + cos–1(cos11) + tan–1(tan7), and x = k(π – 2.4) for an integer k, then the value of k is ______.
Number of values of x satisfying the system of equations `sin^-1sqrt(2 + e^(-2x) - 2e^-x) + sec^-1sqrt(1 - x^2 + x^4) = π/2` and `5^(1+tan^-1x)` = 4 + [cos–1x] is ______ (where [.] denotes greatest integer function)
If x ∈ R – {0}, then `tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/(sqrt(1 + x^2) - sqrt(1 - x^2)))`
`(tan^-1 (sqrt(3)) - sec^-1(-2))/("cosec"^-1(-sqrt(2)) + cos^-1(-1/2))` is equal to ______.
If tan 4θ = `tan(2/θ)`, then the general value of θ is ______.