Advertisements
Advertisements
प्रश्न
Evaluate the following:
`tan^-1(-1/sqrt3)+tan^-1(-sqrt3)+tan^-1(sin(-pi/2))`
उत्तर
`tan^-1(-1/sqrt3)+tan^-1(-sqrt3)+tan^-1(sin(-pi/2))`
= `tan^-1(-1/sqrt3)+tan^-1(-sqrt3)+tan^-1(sin(-pi/2))`
`=tan^-1(-1/sqrt3)+tan^-1(-sqrt3)+tan^-1(-1)`
`=-tan^-1(1/sqrt3)-tan^-1(sqrt3)-tan^-1(1)`
`=-tan^-1(tan pi/6)-tan^-1(pi/3)-tan^-1(pi/4)`
`=-pi/6-pi/3-pi/4`
`=-(3pi)/4`
APPEARS IN
संबंधित प्रश्न
If `sin^-1(1-x) -2sin^-1x = pi/2` then x is
- -1/2
- 1
- 0
- 1/2
Find the principal value of `sec^(-1) (2/sqrt(3))`
`tan^(-1) sqrt3 - sec^(-1)(-2)` is equal to ______.
Find the principal value of `sin^-1(1/sqrt2)`
`sin^-1{cos(sin^-1 sqrt3/2)}`
Find the domain of `f(x)=cotx+cot^-1x`
Evaluate the following:
`\text(cosec)^-1(-2/sqrt3)+2cot^-1(-1)`
In ΔABC, if a = 18, b = 24, c = 30 then find the values of cos `A/2`
Prove the following:
`2tan^-1(1/3) = tan^-1(3/4)`
Find the principal solutions of the following equation:
cot 2θ = 0.
Find the principal value of the following:
`sin^-1 (- 1/2)`
Find the principal value of the following:
`sec^-1 (-sqrt2)`
Find the principal value of `cos^-1 sqrt(3)/2`
If `sin^-1(x/13) + cosec^-1(13/12) = pi/2`, then the value of x is ______
The principal value of `tan^{-1(sqrt3)}` is ______
`sin^2(sin^-1 1/2) + tan^2 (sec^-1 2) + cot^2(cosec^-1 4)` = ______.
`cos(2sin^-1 3/4+cos^-1 3/4)=` ______.
If `3sin^-1((2x)/(1 + x^2)) - 4cos^-1((1 - x^2)/(1 + x^2)) + 2tan^-1((2x)/(1 - x^2)) = pi/3`, then x is equal to ______
Solve for x `tan^-1((1 - x)/(1 + x)) = 1/2 tan^-1x, x > 0`
`"sin"^2 25° + "sin"^2 65°` is equal to ____________.
If `"cos"^-1 "x + sin"^-1 "x" = pi`, then the value of x is ____________.
`"sin"^-1 (-1/2)`
`"tan"(pi/4 + 1/2 "cos"^-1 "x") + "tan" (pi/4 - 1/2 "cos"^-1 "x") =` ____________.
If a = `(2sin theta)/(1 + costheta + sintheta)`, then `(1 + sintheta - costheta)/(1 + sintheta)` is
If A = `[(cosx, sinx),(-sinx, cosx)]`, then A1 A–1 is
sin 6θ + sin 4θ + sin 2θ = 0, then θ =
If `sqrt(2)` sec θ + tan θ = 1, then the general value of θ is
The inverse of `f(x) = sqrt(3x^2 - 4x + 5)` is
what is the value of `cos^-1 (cos (13pi)/6)`
If f'(x) = x–1, then find f(x)
If θ = `sin^-1((2x)/(1 + x^2)) + cos^-1((1 - x^2)/(1 + x^2))`, for `x ≥ 3/2` then the absolute value of `((cosθ + tanθ + 4)/secθ)` is ______.
The value of cos (2cos–1 x + sin–1 x) at x = `1/5` is ______.
Derivative of `tan^-1(x/sqrt(1 - x^2))` with respect sin–1(3x – 4x3) is ______.
If cos–1 x > sin–1 x, then ______.
Find the value of `cos(x/2)`, if tan x = `5/12` and x lies in third quadrant.