Advertisements
Advertisements
प्रश्न
`tan^(-1) sqrt3 - sec^(-1)(-2)` is equal to ______.
पर्याय
π
`-pi/3`
`pi/3`
`(2pi)/3`
उत्तर
`tan^(-1) sqrt3 - sec^(-1)(-2)` is equal to `-pi/3`.
Explanation:
Let y `= "tan"^ -1 sqrt3 - "sec"^-1 (-2)`
`= pi/3 - (pi - pi/3)`
`= pi/3 - (2pi)/3`
`= - pi/3`
APPEARS IN
संबंधित प्रश्न
Find the principal value of `cos^(-1) (sqrt3/2)`
Prove that:
`tan^-1 ((sqrt(1 + x) - sqrt(1 - x))/(sqrt(1 + x) + sqrt(1 - x))) = pi/4 - 1/2 cos^-1 x`, for `- 1/sqrt2 <= x <= 1`
[Hint: put x = cos 2θ]
`sin^-1 1/2-2sin^-1 1/sqrt2`
`sin^-1{cos(sin^-1 sqrt3/2)}`
Evaluate the following:
`cot^-1{2cos(sin^-1 sqrt3/2)}`
Evaluate the following:
`tan^-1(-1/sqrt3)+cot^-1(1/sqrt3)+tan^-1(sin(-pi/2))`
Prove that:
cot−1 7 + cot−1 8 + cot−1 18 = cot−1 3 .
Solve for x:
`tan^-1 [(x-1),(x-2)] + tan^-1 [(x+1),(x+2)] = x/4`
In ΔABC, if a = 18, b = 24, c = 30 then find the values of cos `A/2`
In ΔABC, if a = 18, b = 24, c = 30 then find the values of sinA
Evaluate the following:
`tan^-1 sqrt(3) - sec^-1 (-2)`
Prove the following:
`cos^-1(3/5) + cos^-1(4/5) = pi/(2)`
Prove that `2 tan^-1 (3/4) = tan^-1(24/7)`
Evaluate `cos[pi/6 + cos^-1 (- sqrt(3)/2)]`
Prove that cot−1(7) + 2 cot−1(3) = `pi/4`
Find the principal value of the following:
`sec^-1 (-sqrt2)`
Evaluate:
`cos[tan^-1 (3/4)]`
Evaluate: sin`[1/2 cos^-1 (4/5)]`
Choose the correct alternative:
cos 2θ cos 2ϕ+ sin2 (θ – ϕ) – sin2 (θ + ϕ) is equal to
`sin^-1x + sin^-1 1/x + cos^-1x + cos^-1 1/x` = ______
If `sin^-1x + cos^-1y = (3pi)/10,` then `cos^-1x + sin^-1y =` ______
The principal value of `tan^{-1(sqrt3)}` is ______
`tan[2tan^-1 (1/3) - pi/4]` = ______.
`cos(2sin^-1 3/4+cos^-1 3/4)=` ______.
If `tan^-1x + tan^-1y = (4pi)/5`, then `cot^-1x + cot^-1y` equals ______.
Show that `sin^-1 5/13 + cos^-1 3/5 = tan^-1 63/16`
`"sin"^-1 (1 - "x") - 2 "sin"^-1 "x" = pi/2`
`"sin" ["cot"^-1 {"cos" ("tan"^-1 "x")}] =` ____________.
The value of `"cos"^-1 ("cos" ((33 pi)/5))` is ____________.
The number of solutions of sin–1x + sin–1(1 – x) = cos–1x is
`tan^-1 (1 - x)/(1 + x) = 1/2tan^-1x, (x > 0)`, x then will be equal to.
Assertion (A): The domain of the function sec–12x is `(-∞, - 1/2] ∪ pi/2, ∞)`
Reason (R): sec–1(–2) = `- pi/4`
If θ = `sin^-1((2x)/(1 + x^2)) + cos^-1((1 - x^2)/(1 + x^2))`, for `x ≥ 3/2` then the absolute value of `((cosθ + tanθ + 4)/secθ)` is ______.
Let x = sin–1(sin8) + cos–1(cos11) + tan–1(tan7), and x = k(π – 2.4) for an integer k, then the value of k is ______.
cos–1(cos10) is equal to ______.
`cot^-1(sqrt(cos α)) - tan^-1 (sqrt(cos α))` = x, then sin x = ______.
Derivative of `tan^-1(x/sqrt(1 - x^2))` with respect sin–1(3x – 4x3) is ______.
If sin–1x – cos–1x = `π/6`, then x = ______.